Reciprocal regulation of autophagy and dNTP pools in human cancer cells.

Autophagy

Department of Molecular Pharmacology; Beckman Research Institute; City of Hope National Medical Center; Duarte, CA USA; Taipei Medical University; Taipei, Taiwan.

Published: July 2014

Ribonucleotide reductase (RNR) plays a critical role in catalyzing the biosynthesis and maintaining the intracellular concentration of 4 deoxyribonucleoside triphosphates (dNTPs). Unbalanced or deficient dNTP pools cause serious genotoxic consequences. Autophagy is the process by which cytoplasmic constituents are degraded in lysosomes to maintain cellular homeostasis and bioenergetics. However, the role of autophagy in regulating dNTP pools is not well understood. Herein, we reported that starvation- or rapamycin-induced autophagy was accompanied by a decrease in RNR activity and dNTP pools in human cancer cells. Furthermore, downregulation of the small subunit of RNR (RRM2) by siRNA or treatment with the RNR inhibitor hydroxyurea substantially induced autophagy. Conversely, cancer cells with abundant endogenous intracellular dNTPs or treated with dNTP precursors were less responsive to autophagy induction by rapamycin, suggesting that autophagy and dNTP pool levels are regulated through a negative feedback loop. Lastly, treatment with si-RRM2 caused an increase in MAP1LC3B, ATG5, BECN1, and ATG12 transcript abundance in xenografted Tu212 tumors in vivo. Together, our results revealed a previously unrecognized reciprocal regulation between dNTP pools and autophagy in cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203552PMC
http://dx.doi.org/10.4161/auto.28954DOI Listing

Publication Analysis

Top Keywords

dntp pools
20
cancer cells
16
reciprocal regulation
8
autophagy
8
autophagy dntp
8
pools human
8
human cancer
8
dntp
7
pools
5
regulation autophagy
4

Similar Publications

Altered dNTP pools accelerate tumor formation in mice.

Nucleic Acids Res

November 2024

Department of Medical Biochemistry and Biophysics, Umeå University, Linnaeus väg 6, Umeå, SE 90736, Sweden.

Article Synopsis
  • Changes in deoxyribonucleoside triphosphate (dNTP) pools are tied to higher mutation rates and genome instability in unicellular organisms, but their role in mammalian tumor development is not well understood.
  • A mouse model with a specific mutation in ribonucleotide reductase (RRM1-Y285A) showed decreased enzyme activity, leading to reduced dATP and dGTP levels, resulting in shorter lifespans and earlier tumor onset.
  • Analysis of the tumors indicated unique mutational signatures similar to those found in human cancers with related mutations in ribonucleotide reductase, suggesting that dNTP metabolism mutations may drive cancer development.
View Article and Find Full Text PDF

Objective: Mitochondrial DNA (mtDNA) depletion/deletions syndrome (MDDS) comprises a group of diseases caused by primary autosomal defects of mtDNA maintenance. Our objective was to study the etiology of MDDS in 4 patients who lack pathogenic variants in known genetic causes.

Methods: Whole exome sequencing of the probands was performed to identify pathogenic variants.

View Article and Find Full Text PDF

Understanding the interplay between dNTP metabolism and genome stability in cancer.

Dis Model Mech

August 2024

Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.

The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies.

View Article and Find Full Text PDF

Background: MutT homolog 1 (MTH1) sanitizes oxidized dNTP pools to promote the survival of cancer cells and its expression is frequently upregulated in cancers. Polyubiquitination stabilizes MTH1 to facilitate the proliferation of melanoma cells, suggesting the ubiquitin system controls the stability and function of MTH1. However, whether ubiquitination regulates MTH1 in gastric cancers has not been well defined.

View Article and Find Full Text PDF

Saccharomyces cerevisiae has long been used as a model organism to study genome instability. The SAM1 and SAM2 genes encode AdoMet synthetases, which generate S-AdenosylMethionine (AdoMet) from Methionine (Met) and ATP. Previous work from our group has shown that deletions of the SAM1 and SAM2 genes cause changes to AdoMet levels and impact genome instability in opposite manners.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!