The lack of upstream elements of the Cek1 and Hog1 mediated pathways leads to a synthetic lethal phenotype upon osmotic stress in Candida albicans.

Fungal Genet Biol

Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain.

Published: August 2014

AI Article Synopsis

  • Different MAP kinase pathways in Candida albicans respond to various stimuli, with Hog1 linked to stress and virulence, while Cek1 is associated with cell wall production, mating, and biofilm formation.!* -
  • Mutants lacking both MAPK pathways showed issues like abnormal shape, cell polarity problems, and improper chitin distribution under osmotic stress, leading to decreased viability and signs of cell death, despite some normal phosphorylation and glycerol buildup.!* -
  • The significance of these pathways in virulence is highlighted by the observation that certain mutants (ssk1 msb2 sho1 opy2) displayed no virulence in mice and weakened virulence in Galleria mellonella infections.!*

Article Abstract

Different signal transduction pathways mediated by MAP kinases have been described in Candida albicans. These pathways sense different stimuli and, therefore, elaborate specific responses. Hog1 was identified as the MAPK that is primarily involved in stress response and virulence, while Cek1 was more specific to cell wall biogenesis, mating and biofilm formation. In the present work, mutants defective in both pathways have been characterized under osmotic stress. Both routes are required for a full response against high osmotic challenge, since mutants defective in both pathways displayed aberrant morphology, cell polarity defects and abnormal chitin deposition, which correlate with loss of viability and appearance of apoptotic markers. These alterations occurred in spite of proper Hog1 and Cek1 phosphorylation and increased intra-cellular glycerol accumulation. The relevance of both routes in virulence is shown as ssk1 msb2 sho1 opy2 mutants are avirulent in a mouse systemic model of infection and display reduced virulence in the Galleria mellonella model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2014.05.010DOI Listing

Publication Analysis

Top Keywords

osmotic stress
8
candida albicans
8
mutants defective
8
defective pathways
8
pathways
5
lack upstream
4
upstream elements
4
elements cek1
4
cek1 hog1
4
hog1 mediated
4

Similar Publications

Metabolic analysis reveals the contribution of mechanosensitive channel MscM to extracellular release of glutamate in glycogen-deficient Synechococcus elongatus.

J Biosci Bioeng

December 2024

Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan. Electronic address:

In bacteria, mechanosensitive channels mediate extracellular release of osmolytes, including glutamate, functioning as safety valves upon osmotic downshift. In cyanobacteria, the role of mechanosensitive channels has not been completely elucidated. Recently, the glycogen-deficient ΔglgC mutant of Synechococcus elongatus PCC 7942 was found to release glutamate extracellularly, giving rise to a hypothesis that the role of mechanosensitive channels in cyanobacteria is conserved.

View Article and Find Full Text PDF

The adaptation mechanism of desert soil cyanobacterium Chroococcidiopsis sp. to desiccation.

Plant Physiol Biochem

December 2024

Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Desiccation is a common stress for organisms living in desert soil. Chroococcidiopsis sp. is the dominant species in the soil microbial community of desert regions.

View Article and Find Full Text PDF

Background: Mangrove plants growing in the high salt environment of coastal intertidal zones colonize a variety of microorganisms in the phyllosphere, which have potential salt-tolerant and growth-promoting effects. However, the characteristics of microbial communities in the phyllosphere of mangrove species with and without salt glands and the differences between them remain unknown, and the exploration and the agricultural utilization of functional microbial resources from the leaves of mangrove plants are insufficient.

Results: In this study, we examined six typical mangrove species to unravel the differences in the diversity and structure of phyllosphere microbial communities between mangrove species with or without salt glands.

View Article and Find Full Text PDF

Pot marigold (Calendula officinalis L.) is an herbaceous ornamental and medicinal plant. Climate models predict a reduction of precipitations and increasing the average temperature.

View Article and Find Full Text PDF

Is Pseudofrankia, the non-nitrogen-fixing and/or non-nodulating actinorhizal nodule dweller, mutualistic or parasitic? Insights from genome-predictive analysis.

Int Microbiol

December 2024

Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Science and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia.

This study re-evaluates Pseudofrankia strains, traditionally regarded as parasitic dwellers of actinorhizal root nodules due to their inability to fix nitrogen (Fix -) and/or nodulate (Nod -), as potential plant growth-promoting bacteria (PGPB). We compared plant growth-promoting traits (PGPTs) between Pseudofrankia strains, including one newly sequenced strain BMG5.37 in this study and typical (Fix + /Nod +) Frankia, Protofrankia, and Parafrankia, as well as non-frankia actinorhizal species Nocardia and Micromonospora, and the phytopathogenic Streptomyces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!