Mechanisms of the sarcoplasmic reticulum Ca2+ release induced by P2X receptor activation in mesenteric artery myocytes.

Pharmacol Rep

Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, State Key Laboratory of Molecular and Cellular Biology, A.A. Bogomoletz Institute of Physiology, Kiev, Ukraine; Inserm U1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France. Electronic address:

Published: June 2014

Background: ATP is one of the principal sympathetic neurotransmitters which contracts vascular smooth muscle cells (SMCs) via activation of ionotropic P2X receptors (P2XRs). We have recently demonstrated that contraction of the guinea pig small mesenteric arteries evoked by stimulation of P2XRs is sensitive to inhibitors of IP3 receptors (IP3Rs). Here we analyzed contribution of IP3Rs and ryanodine receptors (RyRs) to [Ca(2+)]i transients induced by P2XR agonist αβ-meATP (10 μM) in single SMCs from these vessels.

Methods: The effects of inhibition of L-type Ca(2+) channels (VGCCs), RyRs and IP3Rs (5 μM nicardipine, 100 μM tetracaine and 30 μM 2-APB, respectively) on αβ-meATP-induced [Ca(2+)]i transients were analyzed using fast x-y confocal Ca(2+) imaging.

Results: The effect of IP3R inhibition on the [Ca(2+)]i transient was significantly stronger (67 ± 7%) than that of RyR inhibition (40 ± 5%) and was attenuated by block of VGCCs. The latter indicates that activation of VGCCs is linked to IP3R-mediated Ca(2+) release. Immunostaining of RyRs and IP3Rs revealed that RyRs are located mainly in deeper sarcoplasmic reticulum (SR) while sub-plasma membrane (PM) SR elements are enriched with type 1 IP3Rs. This structural peculiarity makes IP3Rs more accessible to Ca(2+) entering the cell via VGCCs. Thus, IP3Rs may serve as an "intermediate amplifier" between voltage-gated Ca(2+) entry and RyR-mediated Ca(2+) release.

Conclusions: P2X receptor activation in mesenteric artery SMCs recruits IP3Rs-mediated Ca(2+) release from sub-PM SR, which is facilitated by activation of VGCCs. Sensitivity of IP3R-mediated release to VGCC antagonists in vascular SMCs makes this mechanism of special therapeutic significance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharep.2013.11.005DOI Listing

Publication Analysis

Top Keywords

ca2+ release
12
sarcoplasmic reticulum
8
ca2+
8
p2x receptor
8
receptor activation
8
activation mesenteric
8
mesenteric artery
8
[ca2+]i transients
8
ryrs ip3rs
8
activation vgccs
8

Similar Publications

ERMP1 as a newly identified ER stress gatekeeper in chronic kidney disease.

Am J Physiol Renal Physiol

January 2025

Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

ERMP1 is involved in the Unfolded Protein Response (UPR) pathway in response to endoplasmic reticulum (ER) stress. Given the pivotal role of ER stress in the pathogenesis of acute and chronic kidney diseases, we hypothesized that ERMP1 could be instrumental in the development of renal injury. analysis of RNA sequencing datasets from renal biopsies were exploited to assess the expression of ERMP1 in the kidney under normal or pathological conditions.

View Article and Find Full Text PDF

Biphasic glucose-stimulated insulin secretion over decades: a journey from measurements and modeling to mechanistic insights.

Life Metab

February 2025

New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China.

Glucose-stimulated insulin release from pancreatic β-cells is critical for maintaining blood glucose homeostasis. An abrupt increase in blood glucose concentration evokes a rapid and transient rise in insulin secretion followed by a prolonged, slower phase. A diminished first phase is one of the earliest indicators of β-cell dysfunction in individuals predisposed to develop type 2 diabetes.

View Article and Find Full Text PDF

Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.

View Article and Find Full Text PDF

The roles of mitochondria in global and local intracellular calcium signalling.

Nat Rev Mol Cell Biol

January 2025

MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.

Activation of Ca channels in Ca stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca]) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca uptake and chelation, alongside efficient Ca release mechanisms. Still, mitochondria do not store Ca in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca] signals.

View Article and Find Full Text PDF

Hypericin photoactivation induces triple-negative breast cancer cells pyroptosis by targeting the ROS/CALR/Caspase-3/GSDME pathway.

J Adv Res

January 2025

Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China; Center of Clinical Oncology, The Afliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002 Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China. Electronic address:

Introduction: Hypericin (HP), a natural photosensitizer, has demonstrated great efficacy in photodynamic therapy (PDT) for cancer treatment. In addition to the induction of apoptosis and necrosis through reactive oxygen species (ROS) generation, the therapeutic mechanisms and targets of PDT-HP remain unknown.

Objectives: To investigate the direct targets and mechanisms of action of photoactivated hypericin in the inhibition of triple-negative breast cancer (TNBC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!