The development and mechanistic investigation of a highly stereoselective methodology for preparing α-linked-urea neo-glycoconjugates and pseudo-oligosaccharides is described. This two-step procedure begins with the selective nickel-catalyzed conversion of glycosyl trichloroacetimidates to the corresponding α-trichloroacetamides. The α-selective nature of the conversion is controlled with a cationic nickel(II) catalyst, [Ni(dppe)(OTf)2 ] (dppe=1,2-bis(diphenylphosphino)ethane, OTf=triflate). Mechanistic studies have identified the coordination of the nickel catalyst with the equatorial C2 -ether functionality of the α-glycosyl trichloroacetimidate to be paramount for achieving an α-stereoselective transformation. A cross-over experiment has indicated that the reaction does not proceed in an exclusively intramolecular fashion. The second step in this sequence is the direct conversion of α-glycosyl trichloroacetamide products into the corresponding α-urea glycosides by reacting them with a wide variety of amine nucleophiles in presence of cesium carbonate. Only α-urea-product formation is observed, as the reaction proceeds with complete retention of stereochemical integrity at the anomeric CN bond.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136511 | PMC |
http://dx.doi.org/10.1002/chem.201402433 | DOI Listing |
ACS Omega
January 2025
Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
The human gut microbiota (HGM) is a complex ecosystem subtly dependent on the interplay between hundreds of bacterial species and numerous metabolites. Dietary phenols, whether ingested (e.g.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.
The development of small-molecule catalysts that can effectively activate both reacting partners simultaneously represents a pivotal pursuit in advancing the field of stereoselective glycosylation reactions. We report herein the development of the singly protonated form of readily available phenanthroline as an effective cooperative catalyst that facilitates the coupling of a wide variety of aliphatic alcohols, phenols, and aromatic amines with α-glycosyl trichloroacetimidate donors. The glycosylation reaction likely proceeds via an S2-like mechanism, generating β-selective glycoside products.
View Article and Find Full Text PDFChemistry
November 2024
Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
Carbohydr Res
November 2024
Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, boulevard des Prairies, Laval, Québec, H7V 1B7, Canada; Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi (UQAC), 555, boulevard de l'Université, Chicoutimi, Québec, G7H 2B1, Canada; Unité Mixte de Recherche INRS-UQAC, Institut National de la Recherche Scientifique (INRS), 555, boulevard de l'Université, Chicoutimi, Québec, G7H 2B1, Canada. Electronic address:
Phenylethanoid glycosides are a well-studied class of bioactive compounds found throughout the plant kingdom. In contrast, research on the synthesis and pharmacological activity of phenacyl glycosides, a specific subgroup of phenylethanoid glycosides with a ketone functionality at the alpha position of the phenol ring, has been limited. In this study, we report the synthesis, cytotoxic, antiviral, and anti-inflammatory evaluation of a series of 18 4'-hydroxyphenacyl glycosides.
View Article and Find Full Text PDFJ Org Chem
October 2024
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P. R. China.
In this study, we have successfully developed a glycosylation method using 1--(methylthio)thiocarbonyl-glycoses as donors. Such xanthate donors are easily accessible and shelf-stable. The glycosylation reaction could be promoted by cations (acidic to neutral conditions) under mild conditions, exhibiting a reactivity intermediate between that with glycosyl trichloroacetimidate as the donor and that with thioglycoside as the donor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!