Calcium signaling and β2-adrenergic receptors regulate 1-nitropyrene induced CXCL8 responses in BEAS-2B cells.

Toxicol In Vitro

Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway. Electronic address:

Published: September 2014

Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are widespread environmental pollutants, generated from reactions between PAHs and nitrogen oxides during combustion processes. In the present study we have investigated the mechanisms of CXCL8 (IL-8) responses induced by 1-nitropyrene (1-NP) in human bronchial epithelial BEAS-2B cells, with focus on the possible importance of Ca(2+)-signaling and activation of β2-adrenergic receptors (β2AR). Ca(2+)-chelator treatment obliterated 1-NP-induced CXCL8 (IL-8) responses. 1-NP at 10μM (but not 1μM) induced a rapid and sustained increase in intracellular Ca(2+)-levels ([Ca(2+)]i). The early but not the later, sustained phase of 1-NP-induced [Ca(2+)]i was suppressed by beta-blocker treatment (carazolol). Moreover, inhibition of β2AR by blocking-antibody, beta-blocker treatment (ICI 118551) or siRNA transfection attenuated CXCL8 responses induced by 1-NP. The results confirm that PAHs may induce Ca(2+)-signaling also in BEAS-2B cells, at least partly through activation of β2AR, and suggest that both β2AR- and Ca(2+)-signaling may be involved in 1-NP-induced CXCL8 responses in bronchial epithelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2014.05.012DOI Listing

Publication Analysis

Top Keywords

cxcl8 responses
12
beas-2b cells
12
β2-adrenergic receptors
8
cxcl8 il-8
8
il-8 responses
8
responses induced
8
bronchial epithelial
8
1-np-induced cxcl8
8
beta-blocker treatment
8
cxcl8
5

Similar Publications

Serotype D Infection Induces Activation of the IL-17 Signaling Pathway in Goat Lymphocytes.

Microorganisms

December 2024

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Laboratory of Haikou, College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.

(1) Background: Pasteurellosis is a global zoonotic bacterial disease, which has caused significant economic impacts in animal husbandry. Nevertheless, there is limited understanding of the immune response between goat peripheral blood lymphocytes (PBLs) and goat-derived (). (2) Methods: To investigate the immune response of host PBLs during infection with type D, we established an cell model utilizing isolated primary goat PBLs.

View Article and Find Full Text PDF

Enrichment of H3S28p and H3K9me2 Epigenetic Marks on Inflammatory-Associated Gene Promoters in Response to Severe Burn Injury.

Life (Basel)

December 2024

Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico.

Background: Severe burns activate systemic inflammation and lead to an increase in cytokine levels. Epigenetic elements are key regulators of inflammation; however, their involvement in severe burns has not been studied. In this work, we aimed to unveil the histone H3 posttranslational modifications (PTM) profile and their enrichment in promoters of inflammatory genes in response to severe burns.

View Article and Find Full Text PDF

Inflammatory Response of THP1 and U937 Cells: The RNAseq Approach.

Cells

December 2024

Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria.

THP1 and U937 are monocytic cell lines that are common bioassays to reflect monocyte and macrophage activities in inflammation research. However, THP-1 is a human monocytic leukemia cell line, and U937 originates from pleural effusion of histiocytic lymphoma; thus, even though they serve as bioassay in inflammation research, their response to agonists is not identical. Consequently, there has yet to be a consensus about the panel of strongly regulated genes in THP1 and U937 cells representing the inflammatory response to LPS and IFNG.

View Article and Find Full Text PDF

Exploring Immune Cell Infiltration and Small Molecule Compounds for Ulcerative Colitis Treatment.

Genes (Basel)

November 2024

Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands.

Background/objectives: Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) with a relapsing nature and complex etiology. Bioinformatics analysis has been widely applied to investigate various diseases. This study aimed to identify crucial differentially expressed genes (DEGs) and explore potential therapeutic agents for UC.

View Article and Find Full Text PDF

Atherosclerosis, a major contributor to cardiovascular disease, involves lipid accumulation and inflammatory processes in arterial walls, with oxidized low-density lipoprotein (OxLDL) playing a central role. OxLDL is increased during aging and stimulates monocyte transformation into foam cells and induces metabolic reprogramming and pro-inflammatory responses, accelerating atherosclerosis progression and contributing to other age-related diseases. This study investigated the effects of Mdivi-1, a mitochondrial fission inhibitor, and S1QEL, a selective complex I-associated reactive oxygen species (ROS) inhibitor, on OxLDL-induced responses in monocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!