Gitelman syndrome is a rare autosomal recessive hereditary salt-losing tubulopathy, that manifests as hypokalemic metabolic alkalosis, hypomagnesemia, and hypocalciuria. It is caused by mutations in the solute carrier family 12(sodium/chloride transporters), member 3 (SLC12A3) gene encoding the thiazide-sensitive sodium chloride cotransporter channel (NCCT) in the distal convoluted tubule of the kidney. It is associated with muscle weakness, cramps, tetany, vomiting, diarrhea, abdominal pain, and growth retardation. The incidence of growth retardation, the exact cause of which is unknown, is lower than that of Bartter syndrome. Herein, we discuss the case of an overweight 12.9-year-old girl of short stature presenting with hypokalemic metabolic alkalosis. The patient, on the basis of detection of a heterozygous mutation in the SLC12A3 gene and poor growth hormone (GH) responses in two provocative tests, was diagnosed with Gitelman syndrome combined with complete GH deficiency. GH treatment accompanied by magnesium oxide and potassium replacement was associated with a good clinical response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027064 | PMC |
http://dx.doi.org/10.6065/apem.2013.18.1.36 | DOI Listing |
Medicine (Baltimore)
January 2025
The Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China.
Rationale: Gitelman syndrome (GS) is a rare hereditary electrolyte disorder caused by mutations in the SLC12A3 gene. There is limited literature on the role of hydrochlorothiazide (HCT) testing and the SLC12A3 single heterozygous mutation in the diagnosis and management of patients with GS. In addition, cases of GS with concomitant kidney stones are rare.
View Article and Find Full Text PDFJ Am Soc Nephrol
January 2025
Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France.
The renal tubule and collecting duct express a large number of proteins, all having putative immunoreactive motives. Therefore, all can be the target of pathogenic autoantibodies. However, autoimmune tubulopathies seem to be rare and we hypothesize that they are underdiagnosed.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
February 2025
Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
The field of the with-no-lysine kinases (WNKs) regulation of the thiazide-sensitive NaCl cotransporter (NCC) began at the start of the century with the discovery that mutations in two members of the family, WNK1 and WNK4, resulted in a condition known as familial hyperkalemic hypertension (FHHt). Since FHHt is the mirror image of Gitelman's syndrome that is caused by inactivating mutations of the SLC12A3 gene encoding NCC, it was expected that WNKs modulated NCC activity and that the increased function of the cotransporter is the pathophysiological mechanism of FFHt. This turned out to be the case.
View Article and Find Full Text PDFBMC Nephrol
November 2024
Nephrology Division, Department of Internal Medicine, University of Utah Health, Salt Lake City, USA.
Am J Case Rep
November 2024
Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!