Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and signal integration molecules. In line with this notion, CK1 is tightly connected to the regulation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions, it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, scientific effort has enormously increased (i) to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review, we summarize the current knowledge regarding CK1 regulation, function, and interaction with cellular proteins playing central roles in cellular stress-responses and carcinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032983PMC
http://dx.doi.org/10.3389/fonc.2014.00096DOI Listing

Publication Analysis

Top Keywords

ck1
9
ck1 family
8
cellular stress
8
roles cellular
8
signal transduction
8
cellular
5
family contribution
4
contribution cellular
4
stress response
4
response role
4

Similar Publications

is the most common cause of life-threatening fungal infection in the developed world but remains a therapeutic challenge. Protein kinases have been rewarding drug targets across diverse indications but remain untapped for antifungal development. Previously, screening kinase inhibitors against revealed a 2,3-aryl-pyrazolopyridine, GW461484A (GW), which targets casein kinase 1 (CK1) family member Yck2.

View Article and Find Full Text PDF

Advanced sleep phase syndrome: Role of genetics and aging.

Handb Clin Neurol

January 2025

Sleep Medicine Center, Department of Neurology, Villa Serena Hospital, Città S. Angelo, Pescara, Italy; Villaserena Research Foundation, Città S. Angelo, Pescara, Italy.

Advanced sleep phase (ASP) is seldom brought to medical attention because many individuals easily adapt to their early chronotype, especially if it emerges before the age of 30 and is present in a first-degree relative. In this case, the disorder is considered familial (FASP) and is mostly discovered coincidentally in the presence of other sleep disorders, mainly obstructive sleep apnea syndrome (OSAS). The prevalence of FASP is currently estimated to be between 0.

View Article and Find Full Text PDF

Chemoproteomic Profiling of for Characterization of Anti-fungal Kinase Inhibitors.

bioRxiv

January 2025

Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

is a growing health concern as the leading causal agent of systemic candidiasis, a life-threatening fungal infection with a mortality rate of ~40% despite best available therapy. Yck2, a fungal casein kinase 1 (CK1) family member, is the cellular target of inhibitors YK-I-02 (YK) and MN-I-157 (MN). Here, multiplexed inhibitor beads paired with mass spectrometry (MIB/MS) employing ATP-competitive kinase inhibitors were used to define the selectivity of these Yck2 inhibitors across the global proteome.

View Article and Find Full Text PDF

Development and Discovery of a Selective Degrader of Casein Kinases 1 δ/ε.

J Med Chem

January 2025

Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.

Members of the casein kinase 1 (CK1) family have emerged as key regulators of cellular signaling and as potential drug targets. Functional annotation of the 7 human isoforms would benefit from isoform-selective inhibitors, allowing studies on the role of these enzymes in normal physiology and disease pathogenesis. However, due to significant sequence homology within the catalytic domain, isoform selectivity is difficult to achieve with conventional small molecules.

View Article and Find Full Text PDF

Our research group previously discovered CTN1122, an imidazo[1,2-a]pyrazine compound with promising antileishmanial activity against intramacrophage amastigotes of Leishmania major and L. donovani strains. CTN1122 effectively targets Leishmania casein kinase 1 (L-CK1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!