Early molecular events related to cytoskeleton are poorly described in Amyotrophic Lateral Sclerosis (ALS), especially in the Schwann cell (SC), which offers strong trophic support to motor neurons. Database for Annotation, Visualization and Integrated Discovery (DAVID) tool identified cytoskeleton-related genes by employing the Cellular Component Ontology (CCO) in a large gene profiling of lumbar spinal cord and sciatic nerve of presymptomatic SOD1(G93A) mice. One and five CCO terms related to cytoskeleton were described from the spinal cord deregulated genes of 40 days (actin cytoskeleton) and 80 days (microtubule cytoskeleton, cytoskeleton part, actin cytoskeleton, neurofilament cytoskeleton, and cytoskeleton) old transgene mice, respectively. Also, four terms were depicted from the deregulated genes of sciatic nerve of 60 days old transgenes (actin cytoskeleton, cytoskeleton part, microtubule cytoskeleton and cytoskeleton). Kif1b was the unique deregulated gene in more than one studied region or presymptomatic age. The expression of Kif1b [quantitative polymerase chain reaction (qPCR)] elevated in the lumbar spinal cord (40 days old) and decreased in the sciatic nerve (60 days old) of presymptomatic ALS mice, results that were in line to microarray findings. Upregulation (24.8 fold) of Kif1b was seen in laser microdissected enriched immunolabeled motor neurons from the spinal cord of 40 days old presymptomatic SOD1(G93A) mice. Furthermore, Kif1b was dowregulated in the sciatic nerve Schwann cells of presymptomatic ALS mice (60 days old) that were enriched by means of cell microdissection (6.35 fold), cell sorting (3.53 fold), and primary culture (2.70 fold) technologies. The gene regulation of cytoskeleton molecules is an important occurrence in motor neurons and Schwann cells in presymptomatic stages of ALS and may be relevant in the dying back mechanisms of neuronal death. Furthermore, a differential regulation of Kif1b in the spinal cord and sciatic nerve cells emerged as key event in ALS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033281 | PMC |
http://dx.doi.org/10.3389/fncel.2014.00148 | DOI Listing |
J Am Anim Hosp Assoc
January 2025
Laboratory of Veterinary Clinical Oncology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan (T.M.).
Although intracranial and spinal cord meningioma prognoses have been reported, few studies have evaluated the outcomes and prognoses of orbital and optic nerve meningiomas in dogs. We aimed to evaluate the outcomes of canine orbital meningiomas. The seven dogs included were cytologically or histopathologically diagnosed with meningiomas.
View Article and Find Full Text PDFJ Am Anim Hosp Assoc
January 2025
From Veterinary Neurological Center "La Fenice," Selargius, Italy (I.T., F.T., A.G.).
An 8 yr old, male, mixed-breed dog was presented with a 2 mo history of progressive weakness, worsened in the last 2 days before examination. Neurological examination revealed ambulatory tetraparesis, ataxia, and proprioceptive deficits in all four limbs. Menace response was reduced in the right eye and discomfort was detected on neck manipulation.
View Article and Find Full Text PDFJ Neurosurg Case Lessons
January 2025
Department of Radiology and Biomedical Imaging, University of California, San Francisco, California.
Background: Spinal ependymomas are typically slow-growing tumors with a favorable prognosis. Recently, a new aggressive subtype has emerged with its own distinct histopathological and molecular features characterized by MYCN amplification. However, this subtype of spinal ependymoma is rare, and studies on its imaging characteristics are limited.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China.
Various mature tissue-resident cells exhibit progenitor characteristics following injury. However, the existence of endogenous stem cells with multiple lineage potentials in the adult spinal cord remains a compelling area of research. In this study, we present a cross-species investigation that extends from development to injury.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Biorobotics Laboratory, EPFL, Lausanne, Switzerland.
Humans can perform movements in various physical environments and positions (corresponding to different experienced gravity), requiring the interaction of the musculoskeletal system, the neural system and the external environment. The neural system is itself comprised of several interactive components, from the brain mainly conducting motor planning, to the spinal cord (SC) implementing its own motor control centres through sensory reflexes. Nevertheless, it remains unclear whether similar movements in various environmental dynamics necessitate adapting modulation at the brain level, correcting modulation at the spinal level, or both.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!