Ion channels are crucial components of cellular excitability and are involved in many neurological diseases. This review focuses on the sodium leak, G protein-coupled receptors (GPCRs)-activated NALCN channel that is predominantly expressed in neurons where it regulates the resting membrane potential and neuronal excitability. NALCN is part of a complex that includes not only GPCRs, but also UNC-79, UNC-80, NLF-1 and src family of Tyrosine kinases (SFKs). There is growing evidence that the NALCN channelosome critically regulates its ion conduction. Both in mammals and invertebrates, animal models revealed an involvement in many processes such as locomotor behaviors, sensitivity to volatile anesthetics, and respiratory rhythms. There is also evidence that alteration in this NALCN channelosome can cause a wide variety of diseases. Indeed, mutations in the NALCN gene were identified in Infantile Neuroaxonal Dystrophy (INAD) patients, as well as in patients with an Autosomal Recessive Syndrome with severe hypotonia, speech impairment, and cognitive delay. Deletions in NALCN gene were also reported in diseases such as 13q syndrome. In addition, genes encoding NALCN, NLF- 1, UNC-79, and UNC-80 proteins may be susceptibility loci for several diseases including bipolar disorder, schizophrenia, Alzheimer's disease, autism, epilepsy, alcoholism, cardiac diseases and cancer. Although the physiological role of the NALCN channelosome is poorly understood, its involvement in human diseases should foster interest for drug development in the near future. Toward this goal, we review here the current knowledge on the NALCN channelosome in physiology and diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033012 | PMC |
http://dx.doi.org/10.3389/fncel.2014.00132 | DOI Listing |
Front Genet
December 2024
Bioinformatics Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy.
Introduction: Infantile hypotonia with psychomotor retardation and characteristic facies-1 (IHPRF1, MIM#615419) is a rare, birth onset, autosomal recessive disorder caused by homozygous or compound heterozygous truncating variants in gene (MIM#611549) resulting in a loss-of-function effect.
Methods: We enrolled a new IHPRF1 patients' cohort in the framework of an international multicentric collaboration study. Using specialized pathogenicity predictors and structural analyses, we assessed the mechanistic consequences of the deleterious variants retrieved on NALCN structure and function.
Neurol Sci
December 2023
Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Infantile hypotonia with psychomotor retardation and characteristic facies 1 (IHPRF1) is caused by biallelic mutations in the NALCN gene, the major ion channel responsible for the background Na + conduction in neurons. Through whole-exome sequencing (WES), we report three novel homozygous variants in three families, including c.1434 + 1G > A, c.
View Article and Find Full Text PDFGenet Med
September 2023
Department of Biology, University of Pennsylvania, Philadelphia, PA.
Purpose: The "NALCN channelosome" is an ion channel complex that consists of multiple proteins, including NALCN, UNC79, UNC80, and FAM155A. Only a small number of individuals with a neurodevelopmental syndrome have been reported with disease causing variants in NALCN and UNC80. However, no pathogenic UNC79 variants have been reported, and in vivo function of UNC79 in humans is largely unknown.
View Article and Find Full Text PDFAm J Med Genet A
July 2023
School of Medicine, University of Istanbul, Istanbul, Turkey.
NALCN channelosome complex contributes to maintaining resting membrane potential. The complex has four domains including two intracellular domains (UNC79 and UNC80), one transmembrane domain (NALCN) and one extracellular domain (FAM155A). Mutations in UNC80 were previously linked to infantile hypotonia with psychomotor retardation and characteristics facies 2.
View Article and Find Full Text PDFCell Discov
April 2022
Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
NALCN regulates the resting membrane potential by mediating the Na leak current in neurons, and it functions as a channelosome in complex with FAM155A, UNC79, and UNC80. Dysfunction of the NALCN channelosome causes a broad range of neurological and developmental diseases called NALCN channelopathies in humans. How the auxiliary subunits, especially the two large components UNC79 and UNC80, assemble with NALCN and regulate its function remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!