Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure.

Science

Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kyoto 606-8501, Japan.

Published: June 2014

Phospholipids are asymmetrically distributed in the plasma membrane. This asymmetrical distribution is disrupted during apoptosis, exposing phosphatidylserine (PtdSer) on the cell surface. Using a haploid genetic screen in human cells, we found that ATP11C (adenosine triphosphatase type 11C) and CDC50A (cell division cycle protein 50A) are required for aminophospholipid translocation from the outer to the inner plasma membrane leaflet; that is, they display flippase activity. ATP11C contained caspase recognition sites, and mutations at these sites generated caspase-resistant ATP11C without affecting its flippase activity. Cells expressing caspase-resistant ATP11C did not expose PtdSer during apoptosis and were not engulfed by macrophages, which suggests that inactivation of the flippase activity is required for apoptotic PtdSer exposure. CDC50A-deficient cells displayed PtdSer on their surface and were engulfed by macrophages, indicating that PtdSer is sufficient as an "eat me" signal.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1252809DOI Listing

Publication Analysis

Top Keywords

flippase activity
12
plasma membrane
8
caspase-resistant atp11c
8
engulfed macrophages
8
ptdser
5
caspase-mediated cleavage
4
cleavage phospholipid
4
flippase
4
phospholipid flippase
4
flippase apoptotic
4

Similar Publications

Fungal infections cause millions of deaths annually and are challenging to treat due to limited antifungal options and increasing drug resistance. Cryptococci are intrinsically resistant to the latest generation of antifungals, echinocandins, while , a notorious global threat, is also increasingly resistant. We performed a natural product extract screen for rescue of the activity of the echinocandin caspofungin against H99, identifying butyrolactol A, which restores echinocandin efficacy against resistant fungal pathogens, including .

View Article and Find Full Text PDF

Proto-oncogene KRAS, GTPase (KRAS) is one of the most intensively studied oncogenes in cancer research. Although several mouse models allow for regulated expression of mutant KRAS, selective isolation and analysis of transforming or tumor cells that produce the KRAS oncogene remains a challenge. In our study, we present a knock-in model of oncogenic variant KRAS that enables the "activation" of KRAS expression together with production of red fluorescent protein tdTomato.

View Article and Find Full Text PDF

The enterobacterial common antigen (ECA) is conserved in Gram-negative bacteria of the order although its function is debated. ECA biogenesis depends on the Wzx/Wzy-dependent strategy whereby the newly synthesized lipid-linked repeat units, lipid III, are transferred across the inner membrane by the lipid III flippase WzxE. WzxE is part of the Wzx family and required in many glycan assembly systems, but an understanding of its molecular mechanism is hindered due to a lack of structural evidence.

View Article and Find Full Text PDF

Its own architect: Flipping cardiolipin synthase.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

Article Synopsis
  • Current understanding posits that lipid asymmetry in cell membranes is actively kept and not essential for survival, yet the inner membrane (IM) shows notable asymmetry.
  • Researchers created a specific mutant lacking phosphatidylethanolamine (PE) that relies on cardiolipin (CL) for its IM viability, uncovering how the distribution of CL is regulated in the membrane.
  • The study reveals that the enzyme ClsA adapts its structure in response to varying levels of PE, highlighting a potentially novel mechanism for sustaining lipid asymmetry in membranes without the need for specialized flippase proteins.
View Article and Find Full Text PDF

TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of C. elegans.

Genetics

December 2024

Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming 82071.

Membrane trafficking is a conserved process required for import, export, movement, and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. Using a genetic approach we identified reduction-of-function mutations in tat-1 that suppress nekl-associated molting defects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!