We introduce the proto-object model of visual clutter perception. This unsupervised model segments an image into superpixels, then merges neighboring superpixels that share a common color cluster to obtain proto-objects-defined here as spatially extended regions of coherent features. Clutter is estimated by simply counting the number of proto-objects. We tested this model using 90 images of realistic scenes that were ranked by observers from least to most cluttered. Comparing this behaviorally obtained ranking to a ranking based on the model clutter estimates, we found a significant correlation between the two (Spearman's ρ = 0.814, p < 0.001). We also found that the proto-object model was highly robust to changes in its parameters and was generalizable to unseen images. We compared the proto-object model to six other models of clutter perception and demonstrated that it outperformed each, in some cases dramatically. Importantly, we also showed that the proto-object model was a better predictor of clutter perception than an actual count of the number of objects in the scenes, suggesting that the set size of a scene may be better described by proto-objects than objects. We conclude that the success of the proto-object model is due in part to its use of an intermediate level of visual representation-one between features and objects-and that this is evidence for the potential importance of a proto-object representation in many common visual percepts and tasks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528410 | PMC |
http://dx.doi.org/10.1167/14.7.4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!