The accumulation of plaques of β-amyloid (Aβ) peptides, a hallmark of Alzheimer's disease, results from the sequential cleavage of amyloid precursor protein (APP) by activation of β- and γ-secretases. However, the production of Aβ can be avoided by alternate cleavage of APP by α-and γ-secretases. We hypothesized that cilostazol attenuates Aβ production by increasing a disintegrin and metalloproteinase 10 (ADAM10)/α-secretase activity via SIRT1-coupled retinoic acid receptor-β (RARβ) activation in N2a cells expressing human APP Swedish mutation (N2aSwe). To evoke endogenous Aβ overproduction, the culture medium was switched from medium containing 10% fetal bovine serum (FBS) to medium containing 1% FBS, and cells were cultured for 3∼24 hr. After depletion of FBS in media, N2aSwe cells showed increased accumulations of full-length APP (FL-APP) and Aβ in a time-dependent manner (3-24 hr) in association with decreased ADAM10 protein expression. When pretreated with cilostazol (10-30 μM), FL-APP and Aβ levels were significantly reduced, and ADAM10 and α-secretase activities were restored. Furthermore, the effect of cilostazol on ADAM10 expression was antagonized by pretreating Rp-cAMPS and sirtinol and by SIRT1-gene silencing. In the N2aSwe cells overexpressing the SIRT1 gene, ADAM10, and sAPPα levels were significantly elevated. In addition, like all-trans retinoic acid, cilostazol enhanced the protein expressions of RARβ and ADAM10, and the cilostazol-stimulated ADAM10 elevation was significantly attenuated by LE135 (a RARβ inhibitor), sirtinol, and RARβ-gene silencing. In conclusion, cilostazol suppresses the accumulations of FL-APP and Aβ by activating ADAM10 via the upregulation of SIRT1-coupled RARβ.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.23421DOI Listing

Publication Analysis

Top Keywords

retinoic acid
12
fl-app aβ
12
cilostazol suppresses
8
disintegrin metalloproteinase
8
upregulation sirt1-coupled
8
sirt1-coupled retinoic
8
acid receptor-β
8
n2aswe cells
8
7
adam10
7

Similar Publications

Point mutations in the ligand binding domain of retinoic acid receptor alpha (RARα) are linked to breast fibroepithelial tumor development, but their role in solid tumorigenesis is unclear. In this study, we assessed the functional effects of known RARα mutations on retinoic acid signaling using biochemical and cellular assays. All tested mutants exhibited reduced transcriptional activity compared to wild-type RARα and showed a dominant negative effect, a feature associated with developmental defects and tumor formation.

View Article and Find Full Text PDF

Nowadays, the use of monoclonal antibodies to target angiogenic signalling pathways is common, but, unfortunately, the clinical activity of these agents is limited. Thus, the development of approaches targeting multiple pathways for anti-angiogenic effect will lead to increase the clinical benefit. For this purpose, oleuropein, hesperidin, piperine, proanthocyanidins and retinoic acid, which have previously been proven to be bioactive components, anti-angiogenic performances were experimentally tested in retinal pigment epithelial cells.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has revolutionized the treatment of many cancers by leveraging the immune system to combat malignancies. However, its efficacy is limited by the immunosuppressive tumor microenvironment and other regulatory mechanisms of the immune system. Innate immune modulators (IIMs) provide potent immune activation to complement adaptive immune responses and help overcome resistance to ICB.

View Article and Find Full Text PDF

Background: In Alzheimer's disease (AD), histone acetylation is disrupted, suggesting loss of transcriptional control. Moreover, converging evidence suggests an age- and AD-dependent loss of transcription controlled by all-trans-retinoic acid (ATRA), the bioactive metabolite of vitamin A (VA). Antioxidant depletion causes oxidative stress (OS).

View Article and Find Full Text PDF

Background: Disrupted balance between amyloidogenic and non-amyloidogenic pathways leads to cognitive decline in Alzheimer's disease (AD). Evidence suggests vitamin A (VA) supplementation favors the non-amyloidogenic pathway through upregulation of α-secretase. Originally used to map embryonic retinoic acid (RA) signaling, RARE-LacZ mice possess multiple LacZ genes controlled by retinoic acid response elements (RAREs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!