G protein-coupled receptors (GPCRs) and their ligands are critical regulators of neural progenitor differentiation, and GPCR signaling pathways are regulated by regulator of G protein signaling (RGS) proteins. RGS protein expression is dynamically regulated, and we have recently described the epigenetic regulation of RGS transcript expression. Given the potential of RGS proteins to regulate GPCR signaling and the established role of epigenetic regulation in progenitor differentiation, we explored the impact of epigenetic regulation of RGS transcripts during in vitro differentiation of human neural progenitors. Here, we demonstrate robust upregulation of the RGS transcripts RGS4, RGS5, RGS6, RGS7, and RGS11 during neuronal differentiation, while DNA methyltransferase (DNMT) and histone deacetylase enzyme expression is suppressed during differentiation. Transcripts encoding R7 subfamily RGS proteins and the R7-binding partners R7BP and R9AP showed the greatest upregulation. Further, we showed that direct pharmacological inhibition of DNMT activity enhances expression of RGS2, RGS4, RGS5, RGS6, RGS7, RGS8, RGS9L, RGS10, and RGS14 as well as R7BP and R9AP transcripts in progenitors, consistent with regulation by DNMTs. Our results reveal marked upregulation of RGS expression during neuronal differentiation and suggest that decreased expression of DNMT enzymes during differentiation contributes to upregulation.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000362128DOI Listing

Publication Analysis

Top Keywords

progenitor differentiation
12
rgs proteins
12
epigenetic regulation
12
regulator protein
8
protein signaling
8
transcript expression
8
human neural
8
neural progenitor
8
differentiation
8
gpcr signaling
8

Similar Publications

Objectives: In the last two decades, scientists have gained a better understanding of several aspects of pituitary development. The signaling pathways that govern pituitary morphology and development have been identified, and the compensatory relationships among them are now known.

Aims: This paper aims to emphasize the wide variety of relationships between Pituitary Gland and Stem cells in hormone Production and disease prevention.

View Article and Find Full Text PDF

Elevated circulating levels of calprotectin (CAL), the S100A8/A9 heterodimer, are biomarkers of severe systemic inflammation. Here, we investigate the effects of CAL on early human hematopoiesis. CAL demonstrates limited impact on gene expression in stem and progenitor cells, in contrast with interleukin-6 (IL6), which promotes the expression of the and genes in hematopoietic progenitors and the generation of monocytes that release CAL.

View Article and Find Full Text PDF

The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine.

Regen Ther

March 2025

Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.

The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology.

View Article and Find Full Text PDF

Toxic Effects of Cobalt on Erythroid Progenitor Cells.

Chem Res Toxicol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Cobalt is a crucial trace element that widely exists in natural environments and is necessary for normal physiological function. However, excessive cobalt exposure leads to various adverse health effects, especially hematological and endocrine dysfunctions. Here, we investigated the toxicity of cobalt on early erythropoiesis by using ex vivo cultured erythroid progenitor cells (EPCs).

View Article and Find Full Text PDF

Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!