Anthocyanins in upper (adaxial) leaf tissues provide greater photoprotection than in lower (abaxial) tissues, but also predispose tissues to increased shade acclimation and, consequently, reduced photosynthetic capacity. Abaxial anthocyanins may be a compromise between these costs/benefits. Plants adapted to shaded understory environments often exhibit red/purple anthocyanin pigmentation in lower (abaxial) leaf surfaces, but rarely in upper (adaxial) surfaces. The functional significance of this color pattern in leaves is poorly understood. Here, we test the hypothesis that abaxial anthocyanins protect leaves of understory plants from photo-oxidative stress via light attenuation during periodic exposure to high incident sunlight in the forest understory, without interfering with sunlight capture and photosynthesis during shade conditions. We utilize a cultivar of Colocasia esculenta exhibiting adaxial and abaxial anthocyanin variegation within individual leaves to compare tissues with the following color patterns: green adaxial, green abaxial (GG), green adaxial, red abaxial (GR), red adaxial, green abaxial (RG), and red adaxial, red abaxial (RR). Consistent with a photoprotective function of anthocyanins, tissues exhibited symptoms of increasing photoinhibition in the order (from least to greatest): RR, RG, GR, GG. Anthocyanic tissues also showed symptoms of shade acclimation (higher total chl, lower chl a/b) in the same relative order. Inconsistent with our hypothesis, we did not observe any differences in photosynthetic CO2 uptake under shade conditions between the tissue types. However, GG and GR had significantly (39 %) higher photosynthesis at saturating irradiance (A sat) than RG and RR. Because tissue types did not differ in nitrogen content, these patterns likely reflect differences in resource allocation at the tissue level, with greater nitrogen allocated toward energy processing in GG and GR, and energy capture in RG and RR (consistent with relative sun/shade acclimation). We conclude that abaxial anthocyanins are likely advantageous in understory environments because they provide some photoprotection during high-light exposure, but without the cost of decreased A sat associated with adaxial anthocyanin-induced shade syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-014-2090-6 | DOI Listing |
Cells
May 2024
Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil.
The differential effects of cellular and ultrastructural characteristics on the optical properties of adaxial and abaxial leaf surfaces in the genus highlight the intricate relationships between cellular arrangement and pigment distribution in the plant cells. We examined hyperspectral and chlorophyll fluorescence (ChlF) kinetics using spectroradiometers and optical and electron microscopy techniques. The leaves were analysed for their spectral properties and cellular makeup.
View Article and Find Full Text PDFInt J Mol Sci
March 2024
Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
The accumulation and composition of anthocyanins in leaves of , detached and kept for five days under natural light conditions, were investigated. The presence of fifteen derivatives of cyanidin, petunidin, and delphinidin was found. Changes in the content of each anthocyanin in the leaves before and after exposure to light on the abaxial (naturally upper) and adaxial (naturally lower) sides of the leaves were compared.
View Article and Find Full Text PDFExp Appl Acarol
February 2024
Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Universidad de Concepción, Casilla 160-C, Concepción, CP 4030000, Chile.
Vitis vinifera is cultivated worldwide for its high nutritional and commercial value. More than 60 grape cultivars are cultivated in Chile. Two of these, the país and the corinto cultivars, are the oldest known and widely used for the preparation of traditional homemade drinks and consumption as table grapes.
View Article and Find Full Text PDFPlanta
June 2023
Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
BraANS.A3 was the key gene controlling purple leaf color in pak choi, and two short fragments of promoter region in green pak choi might be interfering its normal expression. Pak choi (B.
View Article and Find Full Text PDFPhysiol Plant
March 2023
The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People's Republic of China.
At the outer canopy, the white leaves of Actinidia kolomikta can turn pink but they stay white in A. polygama. We hypothesized that the different leaf colors in the two Actinidia species may represent different photoprotection strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!