Purpose: Magnetic field fluctuations caused by subject motion, such as breathing or limb motion, can degrade image quality in brain MRI, especially at high field strengths. The purpose of this study was to investigate the feasibility of retrospectively correcting for such physiological field perturbations based on concurrent field monitoring.

Theory And Methods: High-resolution T2*-weighted gradient-echo images of the brain were acquired at 7T with subjects performing different breathing and hand movement patterns. Field monitoring with a set of (19) F NMR probes distributed around the head was performed in two variants: concurrently with imaging or as a single field measurement per readout. The measured field fluctuations were then accounted for in the image reconstruction.

Results: Significant field fluctuations due to motion were observed in all subjects, resulting in severe artifacts in uncorrected images. The artifacts were largely removed by reconstruction based on field monitoring. Accounting for field perturbations up to the 1st spatial order was generally sufficient to recover good image quality.

Conclusions: It has been demonstrated that artifacts due to physiologically induced dynamic field perturbations can be greatly reduced by retrospective image correction based on field monitoring. The necessity to perform such correction is greatest at high fields and for field-sensitive techniques such as T2*-weighted imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.25303DOI Listing

Publication Analysis

Top Keywords

field fluctuations
16
field monitoring
16
field
14
field perturbations
12
physiological field
8
brain mri
8
concurrent field
8
based field
8
retrospective correction
4
correction physiological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!