Epitope profiling via mixture modeling of ranked data.

Stat Med

Dipartimento di Scienze Statistiche, Sapienza Università di Roma, Piazzale A. Moro 5, (00185) Roma, Italy.

Published: September 2014

We propose the use of probability models for ranked data as a useful alternative to a quantitative data analysis to investigate the outcome of bioassay experiments when the preliminary choice of an appropriate normalization method for the raw numerical responses is difficult or subject to criticism. We review standard distance-based and multistage ranking models and propose an original generalization of the Plackett-Luce model to account for the order of the ranking elicitation process. The usefulness of the novel model is illustrated with its maximum likelihood estimation for a real data set. Specifically, we address the heterogeneous nature of the experimental units via model-based clustering and detail the necessary steps for a successful likelihood maximization through a hybrid version of the expectation-maximization algorithm. The performance of the mixture model using the new distribution as mixture components is then compared with alternative mixture models for random rankings. A discussion on the interpretation of the identified clusters and a comparison with more standard quantitative approaches are finally provided.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.6224DOI Listing

Publication Analysis

Top Keywords

ranked data
8
epitope profiling
4
mixture
4
profiling mixture
4
mixture modeling
4
modeling ranked
4
data
4
data propose
4
propose probability
4
probability models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!