Background: The management of steroid-sensitive nephrotic syndrome (SSNS) requires treatment with high-dose glucocorticoids (GCs), but GC usage causes the most frequent form of drug-induced osteoporosis. The aim of our study was to evaluate the impact of GCs on bone mineralization in patients with SSNS using two diagnostic tools, dual-energy X-ray densitometry (DXA) and quantitative ultrasound (QUS), and to compare the diagnostic efficacy of these two imaging tools.

Methods: A total of 30 children with SSNS (age 5.20 ± 2.20 years) were evaluated at the start (T0) and after 1 (T1), 2.44 ± 0.75 (T2, 18 patients) and 5.96 ± 2.33 years (T4, 12 patients) of GC treatment. Patients who stopped at T2 were also evaluated at the 1-year timepoint after ceasing GC treatment (T3).

Results: Of the patients assessed at T2, 11 had bone mineralization at the lower limit of normal versus those at T0 and T1, with bone mineralization rescue at the 1-year timepoint after GC discontinuation. At T4, 6/12 patients had densitometric parameters at the lower limit of normal values, and 3/12 patients showed reduced bone mineralization. The parameters derived from measurements of DXA and QUS were significantly related to each timepoint.

Conclusions: Patients with SSNS receiving GC therapy undergo bone status alteration related to the dosage and duration of the therapy. In terms of diagnostic efficacy, DXA and QUS were comparable, indicating that QUS is a reliable tool to evaluate bone health in children with SSNS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00467-014-2834-3DOI Listing

Publication Analysis

Top Keywords

bone mineralization
16
dxa qus
12
bone health
8
health children
8
steroid-sensitive nephrotic
8
nephrotic syndrome
8
patients
8
patients ssns
8
diagnostic efficacy
8
children ssns
8

Similar Publications

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Matrix vesicle-inspired delivery system based on nanofibrous chitosan microspheres for enhanced bone regeneration.

Mater Today Bio

February 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.

Inspired by the initial mineralization process with bone matrix vesicles (MVs), this study innovatively developed a delivery system to mediate mineralization during bone regeneration. The system comprises nanofibrous chitosan microspheres (NCM) and poly (allylamine hydrochloride)-stabilized amorphous calcium phosphate (PAH-ACP), which is thereafter referred to as NCMP. NCM is synthesized through the thermal induction of chitosan molecular chains, serving as the carrier, while PAH-ACP functions as the mineralization precursor.

View Article and Find Full Text PDF

Ano5 mutation leads to bone dysfunction of gnathodiaphyseal dysplasia disturbing Akt signaling.

Bone Rep

March 2025

Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China.

Background: Gnathodiaphyseal dysplasia (GDD) is a rare autosomal dominant genetic disease characterized by osteosclerosis of the tubular bones and cemento-osseous lesions of the mandibles. () is the pathogenic gene, however, the specific molecular mechanism of GDD remains unclear. Herein, a knockin ( ) mouse model expressing the human mutation p.

View Article and Find Full Text PDF

Fluoride Exposure Modulates Skeletal Development and Mineralization in Zebrafish Larvae.

Environ Toxicol

January 2025

Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.

The presence of high levels of fluoride (F) in groundwater is a major issue worldwide. Although F is essential for healthy teeth and bones, excessive exposure can cause fluorosis or F toxicity. This condition primarily affects the hard tissues due to their high F retention capacity.

View Article and Find Full Text PDF

Introduction: Zinc, an essential trace element, plays an important role in various cellular processes, and zinc deficiency is common in patients undergoing hemodialysis. Zinc has been shown to stimulate osteoblastic bone formation and mineralization and inhibit osteoclastic bone resorption. Although osteoporosis is highly prevalent among patients undergoing hemodialysis, the utility of areal bone mineral density (aBMD) measured using dual-energy X-ray absorptiometry (DXA) is limited because DXA cannot reveal bone microarchitectural alterations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!