The neural tube (NT), the embryonic precursor of the vertebrate brain and spinal cord, is generated by a complex and highly dynamic morphological process. In mammals, the initially flat neural plate bends and lifts bilaterally to generate the neural folds followed by fusion of the folds at the midline during the process of neural tube closure (NTC). Failures in any step of this process can lead to neural tube defects (NTDs), a common class of birth defects that occur in approximately 1 in 1000 live births. These severe birth abnormalities include spina bifida, a failure of closure at the spinal level; craniorachischisis, a failure of NTC along the entire body axis; and exencephaly, a failure of the cranial neural folds to close which leads to degeneration of the exposed brain tissue termed anencephaly. The mouse embryo presents excellent opportunities to explore the genetic basis of NTC in mammals; however, its in utero development has also presented great challenges in generating a deeper understanding of how gene function regulates the cell and tissue behaviors that drive this highly dynamic process. Recent technological advances are now allowing researchers to address these questions through visualization of NTC dynamics in the mouse embryo in real time, thus offering new insights into the morphogenesis of mammalian NTC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wdev.120 | DOI Listing |
Appl Radiat Isot
January 2025
School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou, 325035, China. Electronic address:
For the purpose of assessing image quality and calculating patient X-ray dosage in radiology, computed tomography (CT), fluoroscopy, mammography, and other fields, it is necessary to have prior knowledge of the X-ray energy spectrum. The main components of an X-ray tube are an electron filament, also known as the cathode, and an anode, which is often made of tungsten or rubidium and angled at a certain angle. At the point where the electrons generated by the cathode and the anode make contact, a spectrum of X-rays with energies spanning from zero to the maximum energy value of the released electrons is created.
View Article and Find Full Text PDFEur J Epidemiol
January 2025
Department of Occupational Safety and Health, College of Public Health, China Medical University, No. 100, Section 1, Economic and Trade Road, Beitun District, Taichung, 406040, Taiwan, Republic of China.
Although several environmental factors may increase the risk of nervous system anomalies, the association between exposure to particulate matter with an aerodynamic diameter of ≤ 2.5 μm (PM) and nervous system anomalies is not completely understood. This study aimed to examine the association between expoure to PM and nervous system anomalies, including specific phenotypes during preconception and early pregnancy and determine the crucial time windows.
View Article and Find Full Text PDFDevelopment
January 2025
The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK.
Tissue development relies on the coordinated differentiation of stem cells in dynamically changing environments. The formation of the vertebrate neural tube from stem cells in the caudal lateral epiblast (CLE) is a well characterized example. Despite an understanding of the signalling pathways involved, the gene regulatory mechanisms remain poorly defined.
View Article and Find Full Text PDFAIMS Neurosci
November 2024
Clinical Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA.
It is rare to find free floating fat droplets in the cerebral spinal fluid (CSF) spaces of the brain. When fat droplets are seen in the CSF spaces, the most common cause is the rupture of a dermoid cyst. Dermoid cysts are congenital inclusion cysts that form during the neural tube closure between the third and fifth weeks of embryogenesis.
View Article and Find Full Text PDFChilds Nerv Syst
January 2025
Department of Global Health, Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada.
Background: A giant encephalocele associated with Chiari malformation is a rare congenital anomaly from a cephalad neural tube defect. Early prenatal diagnosis and parental counseling are essential; as early surgical intervention can improve outcomes.
Methods: Between 2010 and 2023, twenty-seven newborns out of 43,815 delivered at our institution were diagnosed with encephaloceles, including seven cases of giant encephalocele associated with Chiari malformation type III.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!