Background: KIR2DS4 gene variants encode full-length and truncated protein products, with only the former serving as membrane-bound receptors to activate natural killer (NK) cells. We have previously shown that full-length KIR2DS4 was associated with relatively high viral load and accelerated heterosexual HIV-1 transmission. Our objective here was to provide confirmatory data and to offer new insights about the potential mechanisms.

Methodology/principal Findings: Mixed models for repeated (longitudinal) outcome measurements on 207 HIV-1 seropositive American youth revealed an association of full-length KIR2DS4 with relatively high viral load and low CD4+ T-cell count (p<0.01 for both). Depending on KIR2DS4 expression (presence or absence) on cell surface, NK cells from 43 individuals with untreated, chronic HIV-1 infection often differed in functional properties, including degranulation and secretion of IFN-γ and MIP-1β. In particular, polyfunctional NK cells were enriched in the KIR2DS4-positive subset.

Conclusions/significance: Full-length KIR2DS4 promotes HIV-1 pathogenesis during chronic infection, probably through the maintenance of an excessively pro-inflammatory state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047121PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099353PLOS

Publication Analysis

Top Keywords

natural killer
8
full-length kir2ds4
8
high viral
8
viral load
8
kir2ds4
4
kir2ds4 promotes
4
promotes hiv-1
4
hiv-1 pathogenesis
4
pathogenesis evidence
4
evidence analyses
4

Similar Publications

Boosting Natural Killer Cells' Immunotherapy with Amoxicillin-Loaded Liposomes.

Mol Pharm

January 2025

State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

Natural killer (NK) cell immunotherapy is a significant category in tumor therapy due to its potent tumor-killing and immunomodulatory effects. This research delves into exploring the mechanisms underlying the ability of amoxicillin to boost NK cell cytotoxicity in NK cell immunotherapy. Amoxicillin significantly enhances the cytotoxic activity of NK-92MI cells against MCF-7 cells by triggering the initiation of a cytolytic program in target cell-deficient NK-92MI cells and augmenting the degranulation level of NK-92MI cells in the presence of target cells.

View Article and Find Full Text PDF

Inflammatory cytokines are fundamental mediators of the organismal response to injury, infection, or other harmful stimuli. To elucidate the early and mostly direct transcriptional signatures of inflammatory cytokines, we profiled all immunologic cell types by RNAseq after systemic exposure to IL1β, IL6, and TNFα. Our results revealed a significant overlap in the responses, with broad divergence between myeloid and lymphoid cells, but with very few cell-type-specific responses.

View Article and Find Full Text PDF

Introduction: Bruton's tyrosine kinase (BTK) is a cytoplasmic signaling protein expressed across a variety of immune cells, terminally differentiated plasma cells, and natural killer cells. Due to the signal potential and targetable nature of BTK, the use of BTK inhibitors (BTKis) has been proposed for the management of several diseases. Currently, the use of BTKis is under investigations for several dermatological conditions such as pemphigus, systemic lupus erythematosus, hidradenitis suppurativa, atopic dermatitis, and chronic spontaneous urticaria (CSU).

View Article and Find Full Text PDF

Killer whales () have been documented to prey on white sharks (), in some cases causing localised shark displacement and triggering ecological cascades. Notably, a series of such predation events have been reported from South Africa over the last decade, with killer whales specifically targeting sharks' liver. However, observations of these interactions are rare, and knowledge of their frequency across the world's oceans remains limited.

View Article and Find Full Text PDF

Background: Acute myocardial infarction (AMI), a subset of acute coronary syndrome, remains the major cause of mortality worldwide. Mitochondrial dysfunction is critically involved in AMI progression, and mitophagy plays a vital role in eliminating damaged mitochondria. This study aimed to explore mitophagy-related biomarkers and their potential molecular basis in AMI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!