Antibody induction versus placebo, no induction, or another type of antibody induction for liver transplant recipients.

Cochrane Database Syst Rev

Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen, Denmark, DK-2100.

Published: June 2014

Background: Liver transplantation is an established treatment option for end-stage liver failure. To date, no consensus has been reached on the use of immunosuppressive T-cell antibody induction for preventing rejection after liver transplantation.

Objectives: To assess the benefits and harms of immunosuppressive T-cell specific antibody induction compared with placebo, no induction, or another type of T-cell specific antibody induction for prevention of acute rejection in liver transplant recipients.

Search Methods: We searched The Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Science Citation Index Expanded, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) until September 2013.

Selection Criteria: Randomised clinical trials assessing immunosuppression with T-cell specific antibody induction compared with placebo, no induction, or another type of antibody induction in liver transplant recipients. Our inclusion criteria stated that participants within each included trial should have received the same maintenance immunosuppressive therapy. We planned to include trials with all of the different types of T-cell specific antibodies that are or have been used for induction (ie., polyclonal antibodies (rabbit of horse antithymocyte globulin (ATG), or antilymphocyte globulin (ALG)), monoclonal antibodies (muromonab-CD3, anti-CD2, or alemtuzumab), and interleukin-2 receptor antagonists (daclizumab, basiliximab, BT563, or Lo-Tact-1)).

Data Collection And Analysis: We used RevMan analysis for statistical analysis of dichotomous data with risk ratio (RR) and of continuous data with mean difference (MD), both with 95% confidence intervals (CIs). We assessed the risk of systematic errors (bias) using bias risk domains with definitions. We used trial sequential analysis to control for random errors (play of chance). We presented outcome results in a summary of findings table.

Main Results: We included 19 randomised clinical trials with a total of 2067 liver transplant recipients. All 19 trials were with high risk of bias. Of the 19 trials, 16 trials were two-arm trials, and three trials were three-arm trials. Hence, we found 25 trial comparisons with antibody induction agents: interleukin-2 receptor antagonist (IL-2 RA) versus no induction (10 trials with 1454 participants); monoclonal antibody versus no induction (five trials with 398 participants); polyclonal antibody versus no induction (three trials with 145 participants); IL-2 RA versus monoclonal antibody (one trial with 87 participants); and IL-2 RA versus polyclonal antibody (two trials with 112 participants). Thus, we were able to compare T-cell specific antibody induction versus no induction (17 trials with a total of 1955 participants). Overall, no difference in mortality (RR 0.91; 95% CI 0.64 to 1.28; low-quality of evidence), graft loss including death (RR 0.92; 95% CI 0.71 to 1.19; low-quality of evidence), and adverse events ((RR 0.97; 95% CI 0.93 to 1.02; low-quality evidence) outcomes was observed between any kind of T-cell specific antibody induction compared with no induction when the T-cell specific antibody induction agents were analysed together or separately. Acute rejection seemed to be reduced when any kind of T-cell specific antibody induction was compared with no induction (RR 0.85, 95% CI 0.75 to 0.96; moderate-quality evidence), and when trial sequential analysis was applied, the trial sequential monitoring boundary for benefit was crossed before the required information size was obtained. Furthermore, serum creatinine was statistically significantly higher when T-cell specific antibody induction was compared with no induction (MD 3.77 μmol/L, 95% CI 0.33 to 7.21; low-quality evidence), as well as when polyclonal T-cell specific antibody induction was compared with no induction, but this small difference was not clinically significant. We found no statistically significant differences for any of the remaining predefined outcomes - infection, cytomegalovirus infection, hepatitis C recurrence, malignancy, post-transplant lymphoproliferative disease, renal failure requiring dialysis, hyperlipidaemia, diabetes mellitus, and hypertension - when the T-cell specific antibody induction agents were analysed together or separately. Limited data were available for meta-analysis on drug-specific adverse events such as haematological adverse events for antithymocyte globulin. No data were found on quality of life.When T-cell specific antibody induction agents were compared with another type of antibody induction, no statistically significant differences were found for mortality, graft loss, and acute rejection for the separate analyses. When interleukin-2 receptor antagonists were compared with polyclonal T-cell specific antibody induction, drug-related adverse events were less common among participants treated with interleukin-2 receptor antagonists (RR 0.23, 95% CI 0.09 to 0.63; low-quality evidence), but this was caused by the results from one trial, and trial sequential analysis could not exclude random errors. We found no statistically significant differences for any of the remaining predefined outcomes: infection, cytomegalovirus infection, hepatitis C recurrence, malignancy, post-transplant lymphoproliferative disease, renal failure requiring dialysis, hyperlipidaemia, diabetes mellitus, and hypertension. No data were found on quality of life.

Authors' Conclusions: The effects of T-cell antibody induction remain uncertain because of the high risk of bias of the randomised clinical trials, the small number of randomised clinical trials reported, and the limited numbers of participants and outcomes in the trials. T-cell specific antibody induction seems to reduce acute rejection when compared with no induction. No other clear benefits or harms were associated with the use of any kind of T-cell specific antibody induction compared with no induction, or when compared with another type of T-cell specific antibody. Hence, more randomised clinical trials are needed to assess the benefits and harms of T-cell specific antibody induction compared with placebo, and compared with another type of antibody, for prevention of rejection in liver transplant recipients. Such trials ought to be conducted with low risks of systematic error (bias) and low risk of random error (play of chance).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8925015PMC
http://dx.doi.org/10.1002/14651858.CD010253.pub2DOI Listing

Publication Analysis

Top Keywords

antibody induction
88
t-cell specific
68
specific antibody
64
induction compared
36
induction
35
antibody
28
clinical trials
24
compared induction
24
trials
22
liver transplant
20

Similar Publications

Duchenne muscular dystrophy (DMD), an X-linked neuromuscular disorder, characterised by progressive immobility, chronic inflammation and premature death, is caused by the loss of the mechano-transducing signalling molecule, dystrophin. In non-contracting cells, such as neurons, dystrophin is likely to have a functional role in synaptic plasticity, anchoring post-synaptic receptors. Dystrophin-expressing hippocampal neurons are key to cognitive functions such as emotions, learning and the consolidation of memories.

View Article and Find Full Text PDF

The therapeutic failure of infliximab therapy remains a challenge in patients with inflammatory bowel disease (IBD), and dose optimization is often required. Accelerated or intensified regimes showed value in treating patients in the acute setting with high CRP or low albumin levels, which are suggested by recent guidelines; however, evidence is weak. Therapeutic drug monitoring (TDM), with anti-tumor necrosis factor-alpha (TNF-α) trough levels and antibodies, showed value during maintenance therapy, but not in induction and can guide clinical decisions in patients that might be undertreated with the standard dosing regimen.

View Article and Find Full Text PDF

Revolutionizing acute myeloid leukemia treatment: a systematic review of immune-based therapies.

Discov Oncol

January 2025

Division of Hematology/Oncology, The University of Texas Health Sciences Center at Houston, McGovern Medical School, 6431 Fannin Street, MSB 5.216, Houston, TX, 77030, USA.

The established protocol for the management of acute myeloid leukemia (AML) has traditionally involved the administration of induction chemotherapy, followed by consolidation chemotherapy, and subsequent allogeneic stem cell transplantation for eligible patients. However, the prognosis for individuals with relapsed and refractory AML remains unfavorable. In response to the necessity for more efficacious therapeutic modalities, targeted immunotherapy has emerged as a promising advancement in AML treatment.

View Article and Find Full Text PDF

Thymoglobulin is used to prevent allograft rejection and is being explored at low doses as intervention immunotherapy in type 1 diabetes. Thymoglobulin consists of a diverse pool of rabbit antibodies directed against many different targets on human thymocytes that can also be expressed by other leukocytes. Since Thymoglobulin is generated by injecting rabbits with human thymocytes, this conceivably leads to differences between Thymoglobulin batches.

View Article and Find Full Text PDF

Novel Role of Pin1-Cis P-Tau-ApoE Axis in the Pathogenesis of Preeclampsia and Its Connection with Dementia.

Biomedicines

December 2024

Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.

Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal-fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy disorder, similar to neurodegenerative diseases such as Alzheimer's disease (AD), including the presence of the cis stereo-isoform of phosphorylated tau (cis P-tau), amyloid-β, and transthyretin in the placenta and circulation. This review provides an overview of the factors that may lead to the induction and accumulation of cis P-tau-like proteins by focusing on the inactivation of peptidyl-prolyl cis-trans isomerase (Pin1) that catalyzes the cis to trans isomerization of P-tau.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!