Purpose: To evaluate the safety profile of solutions containing lutein and zeaxanthin alone or associated with brilliant blue (BB).
Methods: Twenty-eight New Zealand rabbits were used to evaluate 4 concentrations of the various dye solutions: 0.5% lutein/zeaxanthin; 0.5% lutein/zeaxanthin associated with 0.0125% BB; 0.3% lutein/zeaxanthin associated with 0.025% BB; and 0.25% lutein/zeaxanthin associated with 0.05% BB. The pHs of the dye solutions ranged from 6.5 to 7.2 and the osmolarities from 280 to 320 mOsm/mL. Each rabbit had 0.1 mL of one of the dyeing solutions injected into the vitreous cavity of the right eye, while balanced salt solution (BSS) was injected into the left eye as the control. Scotopic electroretinography responses were recorded in all eyes at different time points. The animals were sacrificed at 1 and 7 days after injection; the eyes were analyzed by light and transmission electron microscopy.
Results: No significant (P>0.05) differences were seen in the a- and b-wave amplitudes among groups at any given point in time. Light and electron microscopy findings showed no significant abnormalities either, and were similar to the histological findings after intravitreal BSS injection.
Conclusions: Lutein and zeaxanthin alone or in association with BB showed a good safety profile in this experimental model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/jop.2013.0171 | DOI Listing |
Nutr Res
November 2024
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
Skin carotenoids can be measured non-invasively using spectroscopy methods to provide a biomarker of total dietary carotenoid and carotenoid-rich fruit and vegetable intake. However, the degree to which skin carotenoid biomarkers reflect intakes of specific carotenoids must be determined for specific devices. Previously, findings were mixed regarding the correlation between reflection spectroscopy (RS)-assessed skin carotenoids and individual plasma carotenoid concentrations.
View Article and Find Full Text PDFFood Chem
December 2024
Human Nutrition Program, The Ohio State University, Columbus, OH 43210, United States; Foods for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, United States. Electronic address:
Previous results have been mixed as to whether the emulsifying agent lecithin increases carotenoid bioaccessibility and Caco-2 cellular uptake. The dose-response effect of lecithin (0-5 mg) on carotenoid bioaccessibility and Caco-2 cellular uptake was investigated in vitro using a mixture of β-carotene, lycopene, lutein, zeaxanthin and astaxanthin. Resulting micelles were incubated with Caco-2 cells for 4 h.
View Article and Find Full Text PDFNutrients
November 2024
Ophthalmology Department, Unidade Local de Saúde Coimbra, 3004-561 Coimbra, Portugal.
Age-related macular degeneration (AMD) is a leading cause of vision loss in older individuals, driven by a multifactorial etiology involving genetic, environmental, and dietary factors. Nutritional genomics, which studies gene-nutrient interactions, has emerged as a promising field for AMD prevention and management. Genetic predispositions, such as variants in , , , , and oxidative stress pathways, significantly affect the risk and progression of AMD.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Bioengineering College, Chongqing University, Chongqing 400044, China.
The pigmentation of various components leads to different colors of roses. However, the intricate molecular machinery and metabolic pathways underlying rose pigmentation remain largely unexplored. In this study, we determined that pink and black-red petals contain abundant anthocyanins, reaching concentrations of 800 μg/g and 1400 μg/g, respectively, significantly surpassing those in white and yellow petals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!