Histone modifications are associated with transcript isoform diversity in normal and cancer cells.

PLoS Comput Biol

Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America.

Published: June 2014

Mechanisms that generate transcript diversity are of fundamental importance in eukaryotes. Although a large fraction of human protein-coding genes and lincRNAs produce more than one mRNA isoform each, the regulation of this phenomenon is still incompletely understood. Much progress has been made in deciphering the role of sequence-specific features as well as DNA-and RNA-binding proteins in alternative splicing. Recently, however, several experimental studies of individual genes have revealed a direct involvement of epigenetic factors in alternative splicing and transcription initiation. While histone modifications are generally correlated with overall gene expression levels, it remains unclear how histone modification enrichment affects relative isoform abundance. Therefore, we sought to investigate the associations between histone modifications and transcript diversity levels measured by the rates of transcription start-site switching and alternative splicing on a genome-wide scale across protein-coding genes and lincRNAs. We found that the relationship between enrichment levels of epigenetic marks and transcription start-site switching is similar for protein-coding genes and lincRNAs. Furthermore, we found associations between splicing rates and enrichment levels of H2az, H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me3, H3K27ac, H3K27me3, H3K36me3, H3K79me2, and H4K20me, marks traditionally associated with enhancers, transcription initiation, transcriptional repression, and others. These patterns were observed in both normal and cancer cell lines. Additionally, we developed a novel computational method that identified 840 epigenetically regulated candidate genes and predicted transcription start-site switching and alternative exon splicing with up to 92% accuracy based on epigenetic patterning alone. Our results suggest that the epigenetic regulation of transcript isoform diversity may be a relatively common genome-wide phenomenon representing an avenue of deregulation in tumor development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046914PMC
http://dx.doi.org/10.1371/journal.pcbi.1003611DOI Listing

Publication Analysis

Top Keywords

histone modifications
12
protein-coding genes
12
genes lincrnas
12
alternative splicing
12
transcription start-site
12
start-site switching
12
transcript isoform
8
isoform diversity
8
normal cancer
8
transcript diversity
8

Similar Publications

Maternal obesity alters histone modifications mediated by the interaction between Ezh2 and Ampk, impairing neural differentiation in the developing embryonic brain cortex.

J Biol Chem

January 2025

Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, UAE. Electronic address:

Neurodevelopmental disorders have complex origins that manifest early during embryonic growth and are associated with intricate gene regulation dynamics. A perturbed metabolic environment such as hyperglycemia or dyslipidemia, particularly due to maternal obesity, poses a threat to the optimal development of the embryonic central nervous system. Accumulating evidence suggests that these metabolic irregularities during pregnancy may alter neurogenesis pathways, thereby predisposing the developing fetus to neurodevelopmental disorders.

View Article and Find Full Text PDF

High levels of histone acetylation modifications promote the formation of PGCs.

Poult Sci

January 2025

College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China. Electronic address:

This study investigates the role of histone acetylation in the differentiation of chicken embryonic stem cells (ESCs) into primordial germ cells (PGCs). Transcriptomic sequencing was used to analyze differentially expressed genes during this differentiation process, with functional annotation identifying genes associated with histone acetylation. To explore the role of acetylation, acetate and an acetyltransferase inhibitor (ANAC) were added to the ESCs induction medium.

View Article and Find Full Text PDF

: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by widespread inflammation and autoantibody production. Its development and progression involve genetic, epigenetic, and environmental factors. Although genome-wide association studies (GWAS) have repeatedly identified a susceptibility signal at 16p13, its fine-scale source and its functional and mechanistic role in SLE remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Ovarian cancer is a major cause of cancer-related deaths in women, with both genetic and epigenetic factors contributing to its development and progression.
  • Estrogen signaling plays a significant role in ovarian cancer, involving estrogen receptors and their regulation of genes related to cell growth and death, influenced by epigenetic changes like histone modifications and DNA methylation.
  • This review summarizes current knowledge on these epigenetic mechanisms and explores the potential of epigenetic therapies as treatment options for ovarian cancer.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!