The electrochemical redox of ferulic acid (FA) was investigated systematically by cyclic voltammetry (CV) with a poly(diallyldimethylammonium chloride) functionalized graphene-modified glassy carbon electrode (PDDA-G/GCE) as a working electrode. A simple and sensitive differential pulse voltammetry (DPV) technique was proposed for the direct quantitative determination of FA in Angelica sinensis and spiked human urine samples for the first time. The dependence of the intensities of currents and potentials on nature of the supporting electrolyte, pH, scan rate, and concentration was investigated. Under optimal conditions, the proposed sensor exhibited excellent electrochemical sensitivity to FA, and the oxidation peak current was proportional to FA concentration in the range of 8.95 × 10(-8) M ~5.29 × 10(-5) M, with a relatively low detection limit of 4.42 × 10(-8) M. This fabricated sensor also displayed acceptable reproducibility, long-term stability, and high selectivity with negligible interferences from common interfering species. Besides, it was applied to detect FA in Angelica sinensis and biological samples with satisfactory results, making it a potential alternative tool for the quantitative detection of FA in pharmaceutical analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036735 | PMC |
http://dx.doi.org/10.1155/2014/424790 | DOI Listing |
Pharmacol Res
January 2025
Department of Biochemistry, Imo State University, Owerri, Nigeria.
Phenolic acid-rich fraction from Anisopus mannii (PhAM) contains abundance of ferulic acid, gallic acid, protocatechuic acid, and syringic acid. Among other glycolytic enzymes, in vitro, PhAM counteracted the binding of sodium orthovanadate to phosphofructokinase 1 (PFK-1), improving its activities. In a rat model of diet-induced diabetes, PhAM monotherapy reduced HbA1c by an average of 0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:
The study was conducted to explore the relationship between arabinoxylan (AX) structure and microbial fermentation characteristics, and reveal molecular mechanism of AX on regulating immune function of the host. Results indicated that the group of wheat bran AX showed greater activity of feruloyl esterase, production of short chain fatty acids and ferulic acid compared with the blank group (P < 0.05).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Laboratory of Bioactives (LABBIO), Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, Brazil.
Phenolic compounds (PC) were analyzed by UHPLC-ESI-QTOF-MS in two sorghum genotypes, harvested in two growing seasons (GS) at five distinct days after flowering (DAF) to evaluate how genotype/GS influences the PC synthesis and antioxidant capacity during grain growth. Total phenolic contents were strongly correlated with antioxidant capacity ( > 0.9, < 0.
View Article and Find Full Text PDFPhytochem Anal
January 2025
Rehabilitation Pharmacy Center, Affiliated Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
Introduction: Angelica sinensis is one of the most popular traditional Chinese medicines (TCM) and has been extensively used to treat various diseases. Hundreds of endogenous ingredients have been isolated and identified from this herb, but their spatial distribution within the plant root is largely unknown.
Objectives: In this study, we tried to investigate and map within-tissue spatial distribution of metabolites in Angelica sinensis roots.
Ecotoxicol Environ Saf
January 2025
Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:
Ambrosia trifida is an invasive weed that destroys the local ecological environment, and causes a reduction in population diversity and grassland decline. The evolution of herbicide resistance has also increased the difficulty of managing A. trifida, so interspecific plant competition based on allelopathy has been used as an effective and sustainable ecological alternative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!