We synthesized compounds 4a,c-f,h,i containing the oxazatricyclodecane structure from a novel rearrangement reaction product 2a. All the prepared compounds 4a,c-f,h,i exhibited full agonistic activities for the δ opioid receptor (DOR). Among them, the N-methyl derivative 4c was highly selective, and the most effective DOR agonist in functional assays. Subcutaneous administration of 4c produced dose-dependent and NTI (selective DOR antagonist)-reversible antinociception lacking any convulsive behaviors in the mice acetic acid writhing tests. The N-methyl derivative 4c is expected to be a promising lead compound for selective DOR agonists with a novel chemotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027615PMC
http://dx.doi.org/10.1021/ml400491kDOI Listing

Publication Analysis

Top Keywords

opioid receptor
8
oxazatricyclodecane structure
8
compounds 4ac-fhi
8
n-methyl derivative
8
selective dor
8
novel delta
4
delta opioid
4
receptor agonists
4
agonists oxazatricyclodecane
4
structure synthesized
4

Similar Publications

Background: Central nervous system (CNS)-active polypharmacy (defined as concurrent exposure to three or more antidepressant, antipsychotic, antiseizure, benzodiazepine, opioid, or nonbenzodiazepine benzodiazepine receptor agonists) is associated with significant potential harms in persons living with dementia (PLWD).We conducted a pilot trial to assess a patient nudge intervention's implementation feasibility and preliminary effectiveness to prompt deprescribing conversations between PLWD experiencing CNS-active polypharmacy and their primary care clinicians ("clinicians").

Methods: We used the electronic health record to identify PLWD prescribed CNS-active polypharmacy in primary care clinics from two health systems.

View Article and Find Full Text PDF

Opioids are the primary regimens for perioperative analgesia with controversial effects on oncological survival. The underlying mechanism remains unexplored. This study developed survival-related gene co-expression networks based on RNA-seq and clinical characteristics from TCGA cohort.

View Article and Find Full Text PDF

Rationale And Objectives: In vivo receptor interactions vary as a function of behavioral endpoint, with key differences between reflexive and non-reflexive measures that assess the motivational aspects of pain and pain relief. There have been no assessments of D dopamine agonist / mu opioid receptor (MOR) agonist interactions in non-reflexive behavioral measures of pain. We examined the hypothesis that D/MOR mixtures show enhanced effectiveness in blocking pain depressed behaviors while showing decreased side effects such as sedation and drug reward.

View Article and Find Full Text PDF

Opioids represent one of the key pillars in postoperative pain management, but their use has been associated with a variety of serious side effects. Thus, it is crucial to investigate the timing and course of opioid administration in order to ensure a best efficacy to side-effect profile. The aim of our article was to investigate the analgesic effects of locally administered morphine sulfate (intraplantar) in a carrageenan-induced inflammation model in rats.

View Article and Find Full Text PDF

Advances in the structural understanding of opioid allostery.

Trends Pharmacol Sci

January 2025

Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA; Center for Clinical Pharmacology, Washington University School of Medicine, St Louis, MO, USA. Electronic address:

Activation of the μ opioid receptor (MOR) can give analgesia, but also has dangerous side effects. Drugs that target MOR through an allosteric site, meaning they bind outside of the usual pocket, present a novel mode of receptor activation with different pharmacology relative to orthosteric drugs. Recent structural studies give valuable new information on how allosteric modulators interact with MOR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!