Interrogation of the Active Sites of Protein Arginine Deiminases (PAD1, -2, and -4) Using Designer Probes.

ACS Med Chem Lett

Center for Molecular Design and Preformulations and Toronto General Research Institute, University Health Network , Toronto, Ontario, M5G 1L7, Canada ; Center for Molecular Design and Preformulations and Toronto General Research Institute, University Health Network , Toronto, Ontario, M5G 1L7, Canada ; Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada.

Published: February 2013

Protein arginine deiminases (PADs) are involved in a number of cellular pathways, and they catalyze the transformation of peptidyl arginine residue into a citrulline as part of post-translational modifications. To understand ligand preferences, a group of probe molecules were investigated against PAD1, PAD2, and PAD4. These probe molecules carried a well-known covalent modifier of the catalytic cysteine residue, 2-chloroacetamidine moiety, which was tethered to an α-amino acid via a carbon linker. The chain length for the linker varied from 0 to 4. Time-dependent assays indicated that 2-chloroacetamidine (2CA) with no linker inhibited all PAD enzymes with a similar trend in the second-order rate constants, although with poor affinity. Among the other three probe molecules, compound 3 with a three-carbon linker exhibited the best second-order rate constants for optimal ligand reactivity with the binding site. These analyses provide insights into the relative patterns of covalent inactivation of PAD isozymes and the design of novel inhibitors targeting PAD enzymes as potential therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027443PMC
http://dx.doi.org/10.1021/ml300377dDOI Listing

Publication Analysis

Top Keywords

probe molecules
12
protein arginine
8
arginine deiminases
8
pad enzymes
8
second-order rate
8
rate constants
8
interrogation active
4
active sites
4
sites protein
4
deiminases pad1
4

Similar Publications

Fluorescent distinguishing flavonoid glycosides against aglycones based on the selective recognization of boric acid-functional Eu(III)-organic framework.

Talanta

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. Electronic address:

Flavonoid glycosides are formed by dehydration condensation of aglycones and sugar molecules. Therefore, discrimination of flavonoid glycosides from their corresponding aglycones is a challenging task because they contain the same aglycone part in their molecular structures. Herein, boric acid-functional Eu(III)-organic framework (BA-Eu-MOF) was applied to discriminate flavonoid glycosides including baicalin (Bai), wogonoside (Wog), rutin (Rut), puerarin (Pue), quercitrin (Que) and astragalin (Ast) from their corresponding aglycones for the first time.

View Article and Find Full Text PDF

Ion Networks in Water-based Li-ion Battery Electrolytes.

Acc Chem Res

January 2025

Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.

ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.

View Article and Find Full Text PDF

In this study, an approach has been proposed in response to the urgent need for a sensitive and stable method for glucose detection at low concentrations. Platinum octaethylporphyrin (PtOEP) was chosen as the probe and embedded into the matrix material to yield a glucose-sensing film, i.e.

View Article and Find Full Text PDF

Preparation of Molecularly Imprinted Electrochemical Sensors and Analysis of the Doping of Epinephrine in Equine Blood.

Sensors (Basel)

December 2024

Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.

In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.

View Article and Find Full Text PDF

Ochratoxin A (OTA) is a mycotoxin, a common contaminant of grapes and their derivatives, such as wine, and classified as possible human carcinogen (group 2B) by the International Agency for Research on Cancer (IARC). is the main producer of OTA in grapes. The stability of the molecule and the poor availability of detoxification systems makes the control of in vineyards the main strategy used to reduce OTA contamination risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!