Design, Synthesis, and Biological Evaluation of Novel Conformationally Constrained Inhibitors Targeting EGFR.

ACS Med Chem Lett

Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China.

Published: October 2013

This letter describes the construction of conformationally constrained quinazoline analogues. Structure-activity relationship studies led to the identification of the lead compound 9n . Compound 9n exhibits effective in vitro activity against A431(WT,overexpression) and H1975([L858R/T790M]) cancer cell lines but is significantly less effective against EGFR negative cancer cell lines (SW620, A549, and K562). Compound 9n was also assessed for potency in enzymatic assays and in vivo antitumor studies. The results indicated that 9n is a potent kinase inhibitor against both wild-type and T790M mutant EGFR kinase. Meanwhile, an oral administration of 9n at a dose of 200 mg/kg produced a considerable antitumor effect in a A431 xenograft model, as compared to gefitinib. A preliminary pharmacokinetic study of 9n also indicates it has good pharmacokinetic properties, and therefore, it is a good starting point for further development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027470PMC
http://dx.doi.org/10.1021/ml4002437DOI Listing

Publication Analysis

Top Keywords

conformationally constrained
8
cancer cell
8
cell lines
8
design synthesis
4
synthesis biological
4
biological evaluation
4
evaluation novel
4
novel conformationally
4
constrained inhibitors
4
inhibitors targeting
4

Similar Publications

In this manuscript, an oxidative carbon-carbon bond forming reaction to construct the framework of alkaloids such as scholarinine A is explored using a constrained substrate. Instead of the desired carbon-carbon bond formation between an indole C3 position and a malonate group, a competing carbon-nitrogen bond between the malonate and indole C3 position was observed to form. This work adds to the growing body of substrates for oxidative carbon-carbon bond formation and importantly, demonstrates that these reactions are challenging for some conformationally constrained substrates.

View Article and Find Full Text PDF

Non-ribosomal peptide synthetases are assembly line biosynthetic pathways that are used to produce critical therapeutic drugs and are typically arranged as large multi-domain proteins called megasynthetases. They synthesize polypeptides using peptidyl carrier proteins that shuttle each amino acid through modular loading, modification and elongation steps, and remain challenging to structurally characterize, owing in part to the inherent dynamics of their multi-domain and multi-modular architectures. Here we have developed site-selective crosslinking probes to conformationally constrain and resolve the interactions between carrier proteins and their partner enzymatic domains.

View Article and Find Full Text PDF

Structural Insights into Helix-Loop-Helix Peptides for "Ligand-Targeting" Intracellular Drug Delivery via VEGF Receptor-Mediated Endocytosis.

Biochem Biophys Res Commun

December 2024

Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan. Electronic address:

Article Synopsis
  • Researchers developed "ligand-targeting" peptide-drug conjugates (PDCs) using a specific helix-loop-helix peptide (M49) that targets human VEGF to deliver drugs.
  • The biochemical studies showed that the M49 peptide forms a complex with VEGF, which then interacts with cell surface receptors to trigger the cell's uptake process.
  • An X-ray crystal structure of the M49/VEGF complex revealed details about the binding mechanism and target specificity, providing insights for future drug design and development.
View Article and Find Full Text PDF

Conformationally constrained nucleotides, LNA or α-L-LNA, at the 5' terminus of the antisense strand impeded gene silencing of small interfering RNA (siRNA) by hindering phosphorylation, thereby deterring loading into the RNA-induced silencing complex. Installation of a phosphate mimic, ()-vinyl phosphonate (VP), improved activity considerably. Gene silencing was more efficient when the antisense strand of the siRNA was modified with 5'-VP-α-L-LNA, which adopts a C3'- (south) conformation, than when the antisense strand was modified with 5'-VP-LNA, which adopts a C3'- (north) pucker.

View Article and Find Full Text PDF

Conformationally Constrained Isoquinolinones as Orally Efficacious Hepatitis B Capsid Assembly Modulators.

ACS Med Chem Lett

September 2024

Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States.

Isoquinolinone-based HBV capsid assembly modulators that bind at the dimer:dimer interface of HBV core protein have been shown to suppress viral replication in chronic hepatitis B patients. Analysis of their binding mode by protein X-ray crystallography has identified a region of the small molecule where the application of a constraint can lock the preferred binding conformation and has allowed for further optimization of this class of compounds. Key analogues demonstrated single digit nM EC values in reducing HBV DNA in a HepDE19 cellular assay in addition to favorable ADME and pharmacokinetic properties, leading to a high degree of oral efficacy in a relevant hydrodynamic injection mouse model of HBV infection, with effecting a 3 log decline in serum HBV DNA levels at a once daily dose of 1 mg/kg.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!