Crystal structure and specific binding mode of sisomicin to the bacterial ribosomal decoding site.

ACS Med Chem Lett

Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan.

Published: September 2012

Sisomicin with an unsaturated sugar ring I displays better antibacterial activity than other structurally related aminoglycosides, such as gentamicin, tobramycin, and amikacin. In the present study, we have confirmed by X-ray analyses that the binding mode of sisomicin is basically similar but not identical to that of the related compounds having saturated ring I. A remarkable difference is found in the stacking interaction between ring I and G1491. While the typical saturated ring I with a chair conformation stacks on G1491 through CH/π interactions, the unsaturated ring I of sisomicin with a partially planar conformation can share its π-electron density with G1491 and fits well within the A-site helix.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4025859PMC
http://dx.doi.org/10.1021/ml300145yDOI Listing

Publication Analysis

Top Keywords

binding mode
8
mode sisomicin
8
saturated ring
8
ring
5
crystal structure
4
structure specific
4
specific binding
4
sisomicin
4
sisomicin bacterial
4
bacterial ribosomal
4

Similar Publications

Unlabelled: Crosstalk between autophagy, host cell death, and inflammatory host responses to bacterial pathogens enables effective innate immune responses that limit bacterial growth while minimizing coincidental host damage. ( ) thwarts innate immune defense mechanisms in alveolar macrophages (AMs) during the initial stages of infection and in recruited bone marrow-derived cells during later stages of infection. However, how protective inflammatory responses are achieved during infection and the variation of the response in different macrophage subtypes remain obscure.

View Article and Find Full Text PDF

T cell receptor (TCR) mimics offer a promising platform for tumor-specific targeting of peptide-MHC in cancer immunotherapy. Here, we designed a α-helical TCR mimic (TCRm) specific for the NY-ESO-1 peptide presented by HLA-A 02, achieving high on-target specificity with nanomolar affinity (K = 9.5 nM).

View Article and Find Full Text PDF

Background: Working memory deficit, a key feature of schizophrenia, is a heritable trait shared with unaffected siblings. It can be attributed to dysregulation in transitions from one brain state to another.

Aims: Using network control theory, we evaluate if defective brain state transitions underlie working memory deficits in schizophrenia.

View Article and Find Full Text PDF

The development of a sensory signal amplification approach is very crucial for rapid and precise detection of aflatoxin B (AFB). However, such approaches remain scarce due to the weak interactions between AFB and the sensing probes. Herein, the first example of a dual-excitation fluorescent platform for antibody-free AFB detection is reported, which is assembled by an ordered π-π stack of cationic perylene derivative (PTHA) and tris(2,2'-bipyridine)ruthenium(II) [Ru(bpy)].

View Article and Find Full Text PDF
Article Synopsis
  • This research focuses on developing a sensitive method for detecting neurotransmitters like dopamine, crucial for clinical diagnosis and treatment.
  • Bovine serum albumin templated copper nanoparticles (BSA-Cu NPs) are created to mimic peroxidase activity, allowing for a dual detection technique that shows color changes when catalyzing hydrogen peroxide.
  • The BSA-Cu NPs can detect dopamine effectively, even in human serum samples, using both colorimetric and fluorometric methods integrated with smartphone technology, demonstrating high potential for medical applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!