We present a straightforward process for the discovery of novel back pocket-binding fragment molecules against protein tyrosine kinases. The approach begins by screening against the nonphosphorylated target kinase with subsequent counterscreening of hits against the phosphorylated enzyme. Back pocket-binding fragments are inactive against the phosphorylated kinase. Fragment molecules are of insufficient size to span both regions of the ATP binding pocket; thus, the outcome is binary (back pocket-binding or hinge-binding). Next, fragments with the appropriate binding profile are assayed in combination with a known hinge-binding fragment and subsequently with a known back pocket-binding fragment. Confirmation of back pocket-binding by Yonetani-Theorell plot analysis progresses candidate fragments to crystallization trials. The method is exemplified by a fragment screening campaign against vascular endothelial growth factor receptor 2, and a novel back pocket-binding fragment is presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4025632 | PMC |
http://dx.doi.org/10.1021/ml3000403 | DOI Listing |
J Med Chem
November 2022
Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States.
Activating mutations in KRAS are the most frequent oncogenic alterations in cancer. The oncogenic hotspot position 12, located at the lip of the switch II pocket, offers a covalent attachment point for KRAS inhibitors. To date, KRAS inhibitors have been discovered by first covalently binding to the cysteine at position 12 and then optimizing pocket binding.
View Article and Find Full Text PDFSci Rep
September 2022
Beijing StoneWise Technology Co Ltd., Haidian District, Haidian Street #15, Beijing, 100080, China.
We report for the first time the use of experimental electron density (ED) as training data for the generation of drug-like three-dimensional molecules based on the structure of a target protein pocket. Similar to a structural biologist building molecules based on their ED, our model functions with two main components: a generative adversarial network (GAN) to generate the ligand ED in the input pocket and an ED interpretation module for molecule generation. The model was tested on three targets: a kinase (hematopoietic progenitor kinase 1), protease (SARS-CoV-2 main protease), and nuclear receptor (vitamin D receptor), and evaluated with a reference dataset composed of over 8000 compounds that have their activities reported in the literature.
View Article and Find Full Text PDFBioorg Chem
November 2021
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr Alaini Street, 11562 Cairo, Egypt.
Novel furan 6a-c, furo[2,3-d]pyrimidine 7a-f, 9, 10a-f, 12a,b, 14a-d and furo[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine 8a-f derivatives were designed based on their structural similarity to a previously described oxazole VEGFR-2 back pocket binding fragment. The designed compounds were synthesized and screened for their in vitro VEGFR-2 inhibitory activity where they exhibited good to moderate nanomolar inhibition with improved ligand efficiencies. 8b and 10c (IC = 38.
View Article and Find Full Text PDFJ Med Chem
November 2020
Pfizer Inc. Medicine Design, 1 Portland Street, Cambridge, Massachusetts 02139, United States.
Increased fructose consumption and its subsequent metabolism have been implicated in metabolic disorders such as nonalcoholic fatty liver disease and steatohepatitis (NAFLD/NASH) and insulin resistance. Ketohexokinase (KHK) converts fructose to fructose-1-phosphate (F1P) in the first step of the metabolic cascade. Herein we report the discovery of a first-in-class KHK inhibitor, PF-06835919 (), currently in phase 2 clinical trials.
View Article and Find Full Text PDFJ Biol Chem
April 2018
From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China,
Enfuvirtide (T20) is the only viral fusion inhibitor approved for clinical use, but it has relatively weak anti-HIV activity and easily induces drug resistance. In succession to T20, T1249 has been designed as a 39-mer peptide composed of amino acid sequences derived from HIV-1, HIV-2, and simian immunodeficiency virus (SIV); however, its development has been suspended due to formulation difficulties. We recently developed a T20-based lipopeptide (LP-40) showing greatly improved pharmaceutical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!