Type 1 phototherapeutic agents based on diarylamines were assessed for free radical generation and evaluated in vitro for cell death efficacy in the U937 leukemia cancer cell line. All of the compounds were found to produce copious free radicals upon photoexcitation with UV-A and/or UV-B light, as determined by electron spin resonance (ESR) spectroscopy. Among the diarylamines, the most potent compounds were acridan (4) and 9-phenylacridan (5), with IC50 values of 0.68 μM and 0.17 μM, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4025672 | PMC |
http://dx.doi.org/10.1021/ml200266v | DOI Listing |
Small
December 2024
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
Tumor hypoxia and heat resistance as well as the light penetration deficiency severely compromise the phototherapeutic efficacy, developing phototherapeutic agents to overcome these issues has been sought-after goal. Herein, a diradical-featured organic small-molecule semiconductor, namely TTD-CN, has been designed to show low exciton binding energy of 42 meV by unique dimeric π-π aggregation, promoting near-infrared (NIR) absorption beyond 808 nm and effective photo-induced charge separation. More interestingly, its redox potentials are tactfully manipulated for water splitting to produce O and reduction of O to generate O .
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland.
Difluorinated sulfonamide porphyrin (FPGly) and bacteriochlorin (FBGly), modified by glycine residues, were synthesized and evaluated for photodynamic therapy (PDT). F₂PGly exhibits superior stability and singlet oxygen generation efficiency but features a low-intensity band in the red range (λ = 639 nm). In contrast, FBGly shows a favorable, red-shifted absorption spectrum (λ = 746 nm) that aligns well with phototherapeutic window, facilitating deeper tissue penetration.
View Article and Find Full Text PDFChembiochem
December 2024
Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India.
Ruthenium complexes are among the most extensively studied and developed luminescent transition-metal complexes for anticancer applications. Dinuclear Ru(II) complexes have caught significant interest for larger size, higher charge, and variable complex shapes. In this concept, we have explored past and recent works on the possible biological applications of versatile tetrapyrido[3,2-a : 2,3-c : 3,2-h : 2''',3'''-j]phenazine (tppz)-based dinuclear Ru(II) complexes with a focus on their use as quadruplex DNA probes, organelle imaging, and phototherapeutic agents.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
J-aggregates show great promise in phototherapy, but are limited to specific molecular skeletons and poor molecular self-assembly controllability. Herein, we report a twisted-planar molecular strategy with sonication-induced J-aggregation to develop donor-acceptor (D-A) type J-aggregates for phototherapy. With propeller aggregation-induced emission (AIE) moieties as the twisted subunits and thiophene as the planar π-bridge, the optimal twisted-planar π-interaction in MTSIC induces appropriate slip angle and J-aggregates formation, redshifting the absorption from 624 nm to 790 nm.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
December 2024
Clinical Laboratory, The Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100039, China. Electronic address:
Photodynamic therapy (PDT) utilizing metal-organic frameworks (MOFs) has developed as a new and efficacious treatment for malignant tumors located on the surface of the human body. In order to achieve more effective PDT treatment outcomes, the traditional method has been to increase the intensity of the laser irradiation, but this approach can easily lead to tissue burns. In this study, we developed a new type of nanoparticle, F68-PKI@PCN224, aims to achieve effective PDT upon medullary thyroid carcinoma (MTC) which is an uncommon form of thyroid cancer that originates in the parafollicular cells of the thyroid and the therapeutic outlook for patients with MTC remains unsatisfactory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!