With several functions and a fundamental influence over cognition and motor functions, the basal ganglia are the cohesive centre of the brain. There are several conditions which affect the basal ganglia and these have various clinical and radiological manifestations. Nevertheless, on magnetic resonance imaging there is a limited differential diagnosis for those conditions presenting with T1 weighted spin echo hyperintensity within the central nervous system in general and the basal ganglia in particular. The aim of our review is to explore some of these basal ganglia pathologies and provide image illustrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4043538PMC
http://dx.doi.org/10.12659/PJR.890043DOI Listing

Publication Analysis

Top Keywords

basal ganglia
20
magnetic resonance
8
resonance imaging
8
basal
5
ganglia
5
review pathologies
4
pathologies associated
4
associated high
4
high t1w
4
t1w signal
4

Similar Publications

Space exploration and risk of Parkinson's disease: a perspective review.

NPJ Microgravity

January 2025

Department of Biological Science, Boise State University, Boise, ID, 83725, USA.

Systemic mitochondrial dysfunction, dopamine loss, sustained structural changes in the basal ganglia including reduced tyrosine hydroxylase, and altered gait- these effects observed in space-flown animals and astronauts mirrors Parkinson's disease (PD). Evidence of mitochondrial changes in space-flown human cells, examined through the lens of PD, suggests that spaceflight-induced PD-like molecular changes are important to monitor during deep space exploration. These changes, may potentially elevate the risk of PD in astronauts.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Laboratory for Neuropathology, KU Leuven, Leuven, Belgium.

Background: In 43-63% of symptomatic Alzheimer's disease (AD) patients, there is an observed accumulation of misfolded alpha-synuclein (αSyn). Two primary αSyn subtypes have been identified based on the underlying spreading pattern of this pathology: caudo-rostral and amygdala-predominant. Interactions between pathological TDP-43, Tau, and αSyn can aggravate their spread and aggregation.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.

Background: Parkinson's disease is a hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Inosine a purine nucleoside has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.

Background: Progressive supranuclear palsy (PSP) is a neurodegenerative disorder involving pathological deposition of tau that includes glial inclusions and specific regional vulnerability patterns. Therapeutic developments are hampered by incomplete understanding of disease mechanisms. Few studies have examined its cell type-specific effects.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is an autosomal dominant condition causing severe neurodegeneration in the striatum and the entorhinal cortex (EC). An epigenome wide association study of DNA methylation in HD by our group, identified potential hypomethylation at the PTGDS gene in the striatum. We aimed to validate this result through pyrosequencing, examining the locus in fine detail, and to assess the signal specificity by profiling multiple neurodegenerative diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!