Purpose: Salivary gland scintigraphy (SGS) provides an objective means of diagnosing salivary gland dysfunction in Sjögren's syndrome (SS) patients and in thyroid cancer patients after radioactive iodine (RAI) therapy. In the present study, SGS was performed in SS patients and in thyroid cancer patients post-RAI, and scintigraphic parameters were compared.
Methods: Twenty-eight SS patients (males:females = 1:27, age 53.3 ± 11.9 years), 28 controls (males:females = 3:25, age 54.1 ± 10.1 years), and 92 thyroid cancer patients (males:females = 28:64, age 46.2 ± 12.9) who had undergone a session of high-dose RAI therapy (mean dose, 5.2 ± 1.5 GBq) were included. SGS was performed using Tc-99m pertechnetate (925 MBq). Scintigraphic parameters (parotid uptake ratio PU, submandibular uptake ratio SU, percentage parotid excretion %PE, and percentage submandibular excretion %SE) were measured and compared for SS, thyroid cancer post-RAI, and control patients.
Results: PU, SU, %SE, and %PE were all significantly lower in SS than in post-RAI thyroid cancer or control patients (p < 0.05), whereas only %PE was significantly lower in post-RAI thyroid cancer patients than in controls (p < 0.05). SU and %SE were found to be correlated with the unstimulated whole salivary flow rate.
Conclusion: Scintigraphic parameters derived from SGS can play a crucial role in the detection of salivary gland dysfunction in SS patients and in post-RAI thyroid cancer patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4043001 | PMC |
http://dx.doi.org/10.1007/s13139-011-0091-y | DOI Listing |
Endocr Relat Cancer
January 2025
G Wu, Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
This study evaluated the global burden of thyroid cancer (TC) from 1990 to 2021, analyzing its association with sociodemographic factors, sex, age, risk factors, and future projections. Using 2021 Global Burden of Disease data, we analyzed TC incidence, mortality, and disability-adjusted life years (DALYs) across populations. Risk factors were assessed, and future trends forecasted using the Bayesian age-period-cohort model.
View Article and Find Full Text PDFEndocr Relat Cancer
January 2025
A Nikitski, Department of Pathology, University of Pittsburgh, Pittsburgh, 15261, United States.
Approximately 10-20% of thyroid cancers are driven by gene fusions, which activate oncogenic signaling through aberrant overexpression, ligand-independent dimerization, or loss of inhibitory motifs. We identified 13 thyroid tumors with thyroglobulin (TG) gene fusions and aimed to assess their histopathology and the fusions' oncogenic and tumorigenic properties. Of 11 cases with surgical pathology, 82% were carcinomas and 18% noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP).
View Article and Find Full Text PDFMicrosurgery
February 2025
Plastic and Reconstructive Surgery, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy.
Background: Scalp reconstruction is a challenging field for plastic surgeons. In case of large or complex defects, microsurgical-free flaps are usually required. Reconstructive failure can result in high morbidity and in some cases be life-threatening.
View Article and Find Full Text PDFSAGE Open Med Case Rep
January 2025
Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, China.
Anaplastic thyroid carcinoma (ATC) is one rare type of thyroid carcinoma without standard systemic treatment for advanced disease. Recent evidence has demonstrated promising efficacy of immune checkpoint inhibitors, particularly those targeting programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1), in a variety of solid tumors. However, there have been no research of immune checkpoint inhibitors plus chemotherapy in ATC.
View Article and Find Full Text PDFArch Endocrinol Metab
January 2025
Universidade de São Paulo Instituto de Ciências Biomédicas Departamento de Biologia Celular e do Desenvolvimento São PauloSP Brasil Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil.
Modulating the expression of a coding or noncoding gene is a key tool in scientific research. This strategy has evolved methodologically due to advances in cloning approaches, modeling/algorithms in short hairpin RNA (shRNA) design for knockdown efficiency, and biochemical modifications in RNA synthesis, among other developments. Overall, these modifications have improved the ways to either reduce or induce the expression of a given gene with efficiency and facility for implementation in the lab.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!