Unlabelled: Rotaviruses (RVs) are leading causes of severe diarrhea and vomiting in infants and young children. RVs with G10P[11] genotype specificity have been associated with symptomatic and asymptomatic neonatal infections in Vellore, India. To identify possible viral genetic determinants responsible for differences in symptomology, the genome sequences of G10P[11] RVs in stool samples of 19 neonates with symptomatic infections and 20 neonates with asymptomatic infections were determined by Sanger and next-generation sequencing. The data showed that all 39 viruses had identical genotype constellations (G10-P[11]-I2-R2-C2-M2-A1-N1-T1-E2-H3), the same as those of the previously characterized symptomatic N155 Vellore isolate. The data also showed that the RNA and deduced protein sequences of all the Vellore G10P[11] viruses were nearly identical; no nucleotide or amino acid differences were found that correlated with symptomatic versus asymptomatic infection. Next-generation sequencing data revealed that some stool samples, both from neonates with symptomatic infections and from neonates with asymptomatic infections, also contained one or more positive-strand RNA viruses (Aichi virus, astrovirus, or salivirus/klassevirus) suspected of being potential causes of pediatric gastroenteritis. However, none of the positive-strand RNA viruses could be causally associated with the development of symptoms. These results indicate that the diversity of clinical symptoms in Vellore neonates does not result from genetic differences among G10P[11] RVs; instead, other undefined factors appear to influence whether neonates develop gastrointestinal disease symptoms.

Importance: Rotavirus (RV) strains have been identified that preferentially replicate in neonates, in some cases, without causing gastrointestinal disease. Surveillance studies have established that G10P[11] RVs are a major cause of neonatal infection in Vellore, India, with half of infected neonates exhibiting symptoms. We used Sanger and next-generation sequencing technologies to contrast G10P[11] RVs recovered from symptomatic and asymptomatic neonates. Remarkably, the data showed that the RNA genomes of the viruses were virtually indistinguishable and lacked any differences that could explain the diversity of clinical outcomes among infected Vellore neonates. The sequencing results also indicated that some symptomatic and some asymptomatic Vellore neonates were infected with other enteric viruses (Aichi virus, astrovirus, salvirus/klassevirus); however, none could be correlated with the presence of symptoms in neonates. Together, our findings suggest that other poorly defined factors, not connected to the genetic makeup of the Vellore G10P[11] viruses, influence whether neonates develop gastrointestinal disease symptoms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136299PMC
http://dx.doi.org/10.1128/JVI.01417-14DOI Listing

Publication Analysis

Top Keywords

g10p[11] rvs
16
neonates
13
vellore india
12
symptomatic asymptomatic
12
next-generation sequencing
12
vellore neonates
12
gastrointestinal disease
12
vellore
9
genetic differences
8
g10p[11]
8

Similar Publications

Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus.

Nat Commun

September 2015

Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.

Strain-dependent variation of glycan recognition during initial cell attachment of viruses is a critical determinant of host specificity, tissue-tropism and zoonosis. Rotaviruses (RVs), which cause life-threatening gastroenteritis in infants and children, display significant genotype-dependent variations in glycan recognition resulting from sequence alterations in the VP8* domain of the spike protein VP4. The structural basis of this genotype-dependent glycan specificity, particularly in human RVs, remains poorly understood.

View Article and Find Full Text PDF

Rotaviruses (RVs) are a major cause of neonatal diarrhoea in humans and animals worldwide. In this study, 425 faecal samples were collected between 1999 and 2013 from diarrhoeic livestock and companion animals at different locations in Germany and tested for RVs. A previously published real-time RT-PCR assay was optimized for detection of a larger variety of RV species A (RVA) strains, and real-time RT-PCR assays for detection of RV species B (RVB) and C (RVC) were newly developed.

View Article and Find Full Text PDF

Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses.

Mol Cell Proteomics

November 2014

From the ‡Department of Biochemistry and the National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, Georgia 30322;

Human milk contains a rich set of soluble, reducing glycans whose functions and bioactivities are not well understood. Because human milk glycans (HMGs) have been implicated as receptors for various pathogens, we explored the functional glycome of human milk using shotgun glycomics. The free glycans from pooled milk samples of donors with mixed Lewis and Secretor phenotypes were labeled with a fluorescent tag and separated via multidimensional HPLC to generate a tagged glycan library containing 247 HMG targets that were printed to generate the HMG shotgun glycan microarray (SGM).

View Article and Find Full Text PDF

Unlabelled: Rotaviruses (RVs) are leading causes of severe diarrhea and vomiting in infants and young children. RVs with G10P[11] genotype specificity have been associated with symptomatic and asymptomatic neonatal infections in Vellore, India. To identify possible viral genetic determinants responsible for differences in symptomology, the genome sequences of G10P[11] RVs in stool samples of 19 neonates with symptomatic infections and 20 neonates with asymptomatic infections were determined by Sanger and next-generation sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!