This study deals with the potential of biological processes combining a biotrickler and a biofilter to treat a mixture of sulphur-reduced compounds including dimethyl sulphide (DMS), dimethyl disulphide (DMDS) and hydrogen sulphide (H2S). As a reference, duplicated biofilters were implemented, and operating conditions were similar for all bioprocesses. The first step of this work was to determine the efficiency removal level achieved for each compound of the mixture and in a second step, to assess the longitudinal distribution of biodegradation activities and evaluate the total bacteria, Hyphomicrobium sp. and Thiobacillus thioparus densities along the bed height. A complete removal of hydrogen sulphide is reached at the start of the experiment within the first stage (biotrickler) of the coupling. This study highlighted that the coupling of a biotrickling filter and a biofilter is an interesting way to improve both removal efficiency levels (15-20% more) and kinetics of recalcitrant sulphur compounds such as DMS and DMDS. The total cell densities remained similar (around 1 × 10(10) 16S recombinant DNA (rDNA) copies g dry packing material) for duplicated biofilters and the biofilter below the biotrickling filter. The relative abundances of Hyphomicrobium sp. and T. thioparus have been estimated to an average of 10 ± 7.0 and 0.23 ± 0.07%, respectively, for all biofilters. Further investigation should allow achieving complete removal of DMS by starting the organic sulphur compound degradation within the first stage and surveying microbial community structure colonizing this complex system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-014-5842-0 | DOI Listing |
BMC Genomics
December 2024
College of Physics and Electronic Information, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
Long non-coding RNAs (lncRNAs) play crucial roles in numerous biological processes and are involved in complex human diseases through interactions with proteins. Accurate identification of lncRNA-protein interactions (LPI) can help elucidate the functional mechanisms of lncRNAs and provide scientific insights into the molecular mechanisms underlying related diseases. While many sequence-based methods have been developed to predict LPIs, efficiently extracting and effectively integrating potential feature information that reflects functional attributes from lncRNA and protein sequences remains a significant challenge.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, 330052, P.R. China.
Background: Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity.
View Article and Find Full Text PDFExp Cell Res
December 2024
School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China. Electronic address:
Spermatogenesis and sperm maturation are complex biological processes that involve intricate cellular and molecular interactions. The Aldh2 gene is involved in the metabolism of specific aldehydes generated by oxidative stress. Aldh2 is abundantly expressed in the testis and epididymis; however, the specific role of Aldh2 in regulating spermatogenesis and sperm maturation remains unclear.
View Article and Find Full Text PDFFish Shellfish Immunol
December 2024
Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China; Dalian Jinshiwan Laboratory, Dalian, China. Electronic address:
A number of studies have been demonstrated that arachidonate 5-lipoxygenase (ALOX-5) plays a role in regulating a range of physiological and pathological processes through the catalysis of leukotriene formation from arachidonic acid (ARA). The coding sequence of ALOX-5 from Apostichopus japonicus (Aj-ALOX-5) was successfully amplified, resulting in a 2028 bp ORF sequence that encodes 674 amino acids. A comparison of the amino acid sequence with those of other 5-lipoxygenases revealed that Aj-ALOX-5 has the N-terminal "PLAT domain" and C-terminal "lipoxygenase structural domain" characteristic of this enzyme family.
View Article and Find Full Text PDFBioresour Technol
December 2024
Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:
Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!