AI Article Synopsis

Article Abstract

The chromosomal segment 6q24-q25 comprises a contiguous gene microdeletion syndrome characterized by intrauterine growth retardation, growth delay, intellectual disability, cardiac anomalies, and a dysmorphic facial phenotype. We describe here a 10-year follow-up with detailed clinical, neuropsychological, and cytomolecular data of two siblings, male and female, who presented with developmental delay, microcephaly, short stature, characteristic facial dysmorphisms, multiple organ anomalies, and intellectual disability. Microarray analysis showed an 8.5 Mb 6q24.2-q25.2 interstitial deletion. Fluorescence in situ hybridization analyses confirmed the deletions and identified an insertion of 6q into 8q13 in their father, resulting in a high recurrence risk. This is the first report in sibs with distinct neuropsychological involvement, one of them with stenosis of the descending branch of the aorta.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882109PMC
http://dx.doi.org/10.1002/ajmg.a.36631DOI Listing

Publication Analysis

Top Keywords

intellectual disability
8
cytogenomic delineation
4
delineation clinical
4
clinical follow-up
4
follow-up siblings
4
siblings 6q242-q252
4
6q242-q252 deletion
4
deletion inherited
4
inherited paternal
4
paternal insertion
4

Similar Publications

Active Support is a support model designed to enhance quality of life through activity engagement in people with intellectual disabilities. The aim of the current study was to investigate whether implementation of Active Support affected quality of life, well-being, and activity engagement of residents with mild to moderate intellectual disabilities, using a cluster randomised controlled design. Fourteen services were recruited, and Active Support was implemented after conducting baseline assessments.

View Article and Find Full Text PDF

ANKRD11 binding to cohesin suggests a connection between KBG syndrome and Cornelia de Lange syndrome.

Proc Natl Acad Sci U S A

January 2025

Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.

Ankyrin Repeat Domain-containing Protein 11 () is a causative gene for KBG syndrome, a significant risk factor for Cornelia de Lange syndrome (CdLS), and a highly confident autism spectrum disorder gene. Mutations of lead to developmental abnormalities in multiple organs/tissues including the brain, craniofacial and skeletal bones, and tooth structures with unknown mechanism(s). Here, we find that ANKRD11, via a short peptide fragment in its N-terminal region, binds to the cohesin complex with a high affinity, implicating why mutation can cause CdLS.

View Article and Find Full Text PDF

Perrault syndrome (PS) is an extremely rare autosomal recessive condition characterized primarily by bilateral sensorineural hearing loss in both genders and primary or secondary ovarian failure in females. Neurological features such as cerebral ataxia, peripheral neuropathy, epilepsy, and intellectual disability are frequent manifestations of PS. To date, six genes have been reported to cause PS, and nearly 100 families have been identified worldwide with this syndrome.

View Article and Find Full Text PDF

Prader-Willi syndrome is a rare and complex genetic disorder with multiple physical and behavioral characteristics, affecting endocrine, metabolic, and neurologic systems and producing a plethora of medical complications. Early identification and diagnosis are paramount to providing timely and appropriate interventions to improve patient outcomes. Treatment should focus on neonatal feeding and growth, followed by hormonal therapy for hypothalamic dysfunction, and should then be directed at the prevention and treatment of obesity and obesity-related complications.

View Article and Find Full Text PDF

Silver-Russell Syndrome (SRS) is a genetic disorder characterized by intrauterine and postnatal growth restriction. Most cases are caused by an imprinting error either with hypomethylation of the Imprinted Control Region 1 at 11p15.5, or maternal uniparental disomy of chromosome 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!