Background: Distinct subpopulations of neoplastic cells within tumors, including hepatocellular carcinoma (HCC), display pronounced ability to initiate new tumors and induce metastasis. Recent evidence suggests that signals from transforming growth factor beta (TGF-β) may increase the survival of these so called tumor initiating cells leading to poor HCC prognosis. However, how TGF-β establishes and modifies the key features of these cell subpopulations is not fully understood.
Results: In the present report we describe the differential DNA methylome of CD133-negative and CD133-expressing liver cancer cells. Next, we show that TGF-β is able to increase the proportion of CD133+ cells in liver cancer cell lines in a way that is stable and persistent across cell division. This process is associated with stable genome-wide changes in DNA methylation that persist through cell division. Differential methylation in response to TGF-β is under-represented at promoter CpG islands and enriched at gene bodies, including a locus in the body of the de novo DNA methyl-transferase DNMT3B gene. Moreover, phenotypic changes induced by TGF-β, including the induction of CD133, are impaired by siRNA silencing of de novo DNA methyl-transferases.
Conclusions: Our study reveals a self-perpetuating crosstalk between TGF-β signaling and the DNA methylation machinery, which can be relevant in the establishment of cellular phenotypes. This is the first indication of the ability of TGF-β to induce genome-wide changes in DNA methylation, resulting in a stable change in the proportion of liver cancer cell subpopulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070873 | PMC |
http://dx.doi.org/10.1186/1471-2164-15-435 | DOI Listing |
J Oral Pathol Med
January 2025
Department of Oral and Maxillofacial Pathology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
Background: Considering that peripheral blood biomarkers are prognostic predictors for several human tumors, this study aimed to comparatively analyze the association of hematological alterations with the incidence of epithelial dysplasia (ED) and oral squamous cell carcinoma (OSCC) in male and female mice treated with 4-nitroquinoline-N-oxide (4NQO) and ethanol (EtOH).
Methods: 120 C57Bl/6J mice (60 males and 60 females) were allocated to four groups (n = 15). They were treated firstly either with 5 mg/mL propylene glycol (PPG) or 100 μg/mL 4NQO in the drinking water for 10 weeks, followed by sterilized water (HO) or 8% EtOH (v/v) for 15 weeks, as follows: PPG/HO, PPG/EtOH, 4NQO/HO, and 4NQO/EtOH (CEUA-UFU, #020/21).
Ann Surg Oncol
January 2025
Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
Ann Surg Oncol
January 2025
Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Anaplastic thyroid cancer (ATC) is a highly lethal disease, often diagnosed with advanced locoregional and distant metastases, resulting in a median survival of just 3-5 months. This study determines the stratified effectiveness of baseline treatments in all combinations, enabling precise prognoses prediction and establishing benchmarks for advanced therapeutic options.
Methods: The study extracted a cohort of pathologically confirmed ATC patients from the Surveillance, Epidemiology, and End Results program.
Cell Biol Toxicol
January 2025
Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China.
Sorafenib (Sora) is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC). It can significantly improve the survival rate of patients with advanced HCC, but it is prone to drug resistance during treatment, so the therapeutic effect is extremely limited. Here, we demonstrate that an elevated expression of protein kinase p38γ in hepatocellular carcinoma cells diminishes the tumor cells' sensitivity to Sora.
View Article and Find Full Text PDFFront Optoelectron
January 2025
Institute of Physics, Saratov State University, Saratov, 410012, Russia.
The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!