Insight into the key factors driving the competition of halogen and hydrogen bonds is obtained by studying the affinity of the Lewis bases trimethylamine (TMA), dimethyl ether (DME), and methyl fluoride (MF) towards difluoroiodomethane (CHF(2) I). Analysis of the infrared and Raman spectra of solutions in liquid krypton containing mixtures of TMA and CHF(2) I and of DME and CHF(2) I reveals that for these Lewis bases hydrogen and halogen-bonded complexes appear simultaneously. In contrast, only a hydrogen-bonded complex is formed for the mixtures of CHF(2) I and MF. The complexation enthalpies for the C-H⋅⋅⋅Y hydrogen-bonded complexes with TMA, DME, and MF are determined to be -14.7(2), -10.5(5) and -5.1(6) kJ mol(-1), respectively. The values for the C-I⋅⋅⋅Y halogen-bonded isomers are -19.0(3) kJ mol(-1) for TMA and -9.9(8) kJ mol(-1) for DME. Generalization of the observed trends suggests that, at least for the bases studied here, softer Lewis bases such as TMA favor halogen bonding, whereas harder bases such as MF show a substantial preference for hydrogen bonding.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201402116DOI Listing

Publication Analysis

Top Keywords

lewis bases
12
bases
5
tma
5
tuning halogen/hydrogen
4
halogen/hydrogen bond
4
bond competition
4
competition spectroscopic
4
spectroscopic conceptual
4
conceptual dft
4
dft study
4

Similar Publications

Cases abound in which nearly identical traits have appeared in distant species facing similar environments. These unmistakable examples of adaptive evolution offer opportunities to gain insight into their genetic origins and mechanisms through comparative analyses. Here, we present a novel comparative genomics approach to build genetic models that underlie the independent origins of convergent traits using evolutionary sparse learning.

View Article and Find Full Text PDF

The exploration of phosphorus-nitrogen heterocycles derived from chelating N-donor ligands is an area of research that has lagged behind the development of similar heterocycles based on other main group elements, most notably boron. The fact that phosphorus and nitrogen are both group 15 elements and that their compounds are most commonly viewed as Lewis bases likely contributes to this observation. However, through judicious ligand design and creative use of phosphorus sources that render phosphorus as Lewis acidic and/or electron poor, a variety of heterocyclic architectures are possible.

View Article and Find Full Text PDF

In this Frontier Article, the work carried out within our research group in Bologna in the field of surface decorated metal carbonyl clusters will be outlined and put in a more general context. After a short Introduction, clusters composed of a metal carbonyl core decorated on the surface by metal-ligand fragments will be analyzed. Both metal-ligand fragments behaving as Lewis acids and Lewis bases will be considered.

View Article and Find Full Text PDF

Tailoring pyridine bridged chalcogen-concave molecules for defects passivation enables efficient and stable perovskite solar cells.

Nat Commun

January 2025

National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China.

Suppressing deep-level defects at the perovskite bulk and surface is indispensable for reducing the non-radiative recombination losses and improving efficiency and stability of perovskite solar cells (PSCs). In this study, two Lewis bases based on chalcogen-thiophene (n-Bu4S) and selenophene (n-Bu4Se) having tetra-pyridine as bridge are developed to passivate defects in perovskite film. The uncoordinated Pb and iodine vacancy defects can interact with chalcogen-concave group and pyridine group through the formation of the Lewis acid-base adduct, particularly both the defects can be surrounded by concave molecules, resulting in effective suppression charge recombination.

View Article and Find Full Text PDF

A computational study of X-H···Y binary hydrogen-bonded complexes was undertaken to examine the red- and blue-shifting behavior of three model X-H proton donors interacting with a series of Lewis bases: Y = NH, NCLi, NCH, NCF, CH, BF, CO, N and Ne. Two of these proton donors, FArH and FCH, have blue-shifting tendencies, while the third, FH, has red-shifting tendencies. A perturbation theory model for frequency shifts that was derived many years ago was employed to partition the predicted frequency shift into the sum of two components, one dependent on the second derivative of the interaction energy with respect to X-H displacement and the other dependent on the X-H bond length change in the binary complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!