Wax esters are industrially relevant high-value molecules. For sustainable production of wax esters, bacterial cell factories are suggested to replace the chemical processes exploiting expensive starting materials. However, it is well recognized that new sophisticated solutions employing synthetic biology toolbox are required to improve and tune the cellular production platform to meet the product requirements. For example, saturated wax esters with alkanol chain lengths C12 or C14 that are convenient for industrial uses are rare among bacteria. Acinetobacter baylyi ADP1, a natural producer of wax esters, is a convenient model organism for studying the potentiality and modifiability of wax esters in a natural host by means of synthetic biology. In order to establish a controllable production platform exploiting well-characterized biocomponents, and to modify the wax ester synthesis pathway of A. baylyi ADP1 in terms product quality, a fatty acid reductase complex LuxCDE with an inducible arabinose promoter was employed to replace the natural fatty acyl-CoA reductase acr1 in ADP1. The engineered strain was able to produce wax esters by the introduced synthetic pathway. Moreover, the fatty alkanol chain length profile of wax esters was found to shift toward shorter and more saturated carbon chains, C16:0 accounting for most of the alkanols. The study demonstrates the potentiality of recircuiting a biosynthesis pathway in a natural producer, enabling a regulated production of a customized bioproduct. Furthermore, the LuxCDE complex can be potentially used as a well-characterized biopart in a variety of synthetic biology applications involving the production of long-chain hydrocarbons.

Download full-text PDF

Source
http://dx.doi.org/10.1021/sb4000788DOI Listing

Publication Analysis

Top Keywords

wax esters
28
baylyi adp1
12
synthetic biology
12
wax ester
8
acinetobacter baylyi
8
wax
8
production platform
8
alkanol chain
8
natural producer
8
esters
7

Similar Publications

A novel remote deep ultraviolet laser ablation inlet connected to a dual electrospray ionization-atmospheric pressure chemical ionization (rDUVLAESCI) source is presented. This system allows for the simultaneous and spatial acquisition of mass spectrometry (MS) data for organic molecules with diverse polarities and molecular weights. Deep 193 nm UV laser ablation was used to sample analytes from dried spots for molecular MS analysis precisely.

View Article and Find Full Text PDF

Zooplankton such as copepods and krill are currently used to produce marine oil supplements, with the aim of helping consumers achieve the recommended intake of n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs). Oils from lower trophic levels differ from fish oil in the distribution of lipids into different classes, and this can influence the bioaccessibility of fatty acids, i.e.

View Article and Find Full Text PDF

Spent coffee grounds, the main by-product of the coffee-brewing process, were valorized as a renewable source of lipids for the synthesis of novel wax esters and as an alternative and sustainable oil-structuring agent for the production of oleogels. The lipase-catalyzed reactions were implemented using fatty alcohols both under solvent-free conditions and with limonene as an environmentally friendly solvent. Wax esters were evaluated for their ability to formulate olive oil oleogels through the determination of the physical properties of oleogels.

View Article and Find Full Text PDF

Identification of osmotic stress resistance mediated by in apple.

Front Plant Sci

December 2024

Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.

KAR (Karrikin), a novel plant growth regulator, can be recognized specifically by plants and can activate resistance responses. MdKAI2 is the natural receptor of KARs in apple. Here, we report the identification of osmotic stress resistance in via the method of genetic transformation.

View Article and Find Full Text PDF

Background: Biotechnologies that utilize microorganisms as production hosts for lipid synthesis will enable an efficient and sustainable solution to produce lipids, decreasing reliance on traditional routes for production (either petrochemical or plant-derived) and supporting a circular bioeconomy. To realize this goal, continuous biomanufacturing processes must be developed to maximize productivity and minimize costs compared to traditional batch fermentation processes.

Results: Here, we utilized biofilms of the marine bacterium, Marinobacter atlanticus, to produce wax esters from succinate (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!