The identification of genes involved in the adaptive evolution of non-model organisms with uncharacterized genomes constitutes a major challenge. This study employed a rigorous and targeted candidate gene approach to test for positive selection on protein-coding genes of the blue crab, Callinectes sapidus. Four genes with putative roles in physiological adaptation to environmental stress were chosen as candidates. A fifth gene not expected to play a role in environmental adaptation was used as a control. Large samples (n>800) of DNA sequences from C. sapidus were used in tests of selective neutrality based on sequence polymorphisms. In combination with these, sequences from the congener C. similis were used in neutrality tests based on interspecific divergence. In multiple tests, significant departures from neutral expectations and indicative of positive selection were found for the candidate gene trehalose 6-phosphate synthase (tps). These departures could not be explained by any of the historical population expansion or bottleneck scenarios that were evaluated in coalescent simulations. Evidence was also found for balancing selection at ATP-synthase subunit 9 (atps) using a maximum likelihood version of the Hudson, Kreitmen, and Aguadé test, and positive selection favoring amino acid replacements within ATP/ADP translocase (ant) was detected using the McDonald-Kreitman test. In contrast, test statistics for the control gene, ribosomal protein L12 (rpl), which presumably has experienced the same demographic effects as the candidate loci, were not significantly different from neutral expectations and could readily be explained by demographic effects. Together, these findings demonstrate the utility of the candidate gene approach for investigating adaptation at the molecular level in a marine invertebrate for which extensive genomic resources are not available.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045945 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099081 | PLOS |
J Agric Food Chem
January 2025
Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China.
Preharvest sprouting (PHS) is an unfavorable trait in cereal crops that significantly reduces grain yield and quality. However, the regulatory mechanisms underlying this complex trait are still largely unknown. Here, 276 rice accessions from the 3000 Rice Genomes Project were used to perform a genome-wide association study.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI.
Purpose: Although lung cancer is one of the most common malignancies, the underlying genetics regarding susceptibility remain poorly understood. We characterized the spectrum of pathogenic/likely pathogenic (P/LP) germline variants within DNA damage response (DDR) genes among lung cancer cases and controls in non-Hispanic Whites (NHWs) and African Americans (AAs).
Materials And Methods: Rare, germline variants in 67 DDR genes with evidence of pathogenicity were identified using the ClinVar database.
PLoS Negl Trop Dis
January 2025
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America.
Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh.
The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science and Engineering, University of Chittagong, Chattogram, Bangladesh.
Rice blast, caused by Magnaporthe oryzae, is one of the most destructive fungal diseases in rice, resulting in major economic losses worldwide. Genetic and genomic studies have identified key genes and proteins, such as AvrPik variants and MAX proteins, that are crucial for the pathogen's virulence. These effector proteins interact with specific alleles of the Pik gene family on rice chromosome 11, modulating the host's immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!