Shape-controlled metal nanoparticles (NPs) interfacing Pt and nonprecious metals (M) are highly active energy conversion electrocatalysts; however, there are still few routes to shaped M-Pt core-shell NPs and fewer studies on the geometric effects of shape and strain on catalysis by such structures. Here, well-defined cubic multilayered Pd-Ni-Pt sandwich NPs are synthesized as a model platform to study the effects of the nonprecious metal below the shaped Pt surface. The combination of shaped Pd substrates and mild reduction conditions directs the Ni and Pt overgrowth in an oriented, layer-by-layer fashion. Exposing a majority of Pt(100) facets, the catalytic performance in formic acid and methanol electro-oxidations (FOR and MOR) is assessed for two different Ni layer thicknesses and two different particle sizes of the ternary sandwich NPs. The strain imparted to the Pt shell layer by the introduction of the Ni sandwich layer (Ni-Pt lattice mismatch of ∼11%) results in higher specific initial activities compared to core-shell Pd-Pt bimetallic NPs in alkaline MOR. The trends in activity are the same for FOR and MOR electrocatalysis in acidic electrolyte. However, restructuring in acidic conditions suggests a more complex catalytic behavior from changes in composition. Notably, we also show that cubic quaternary Au-Pd-Ni-Pt multishelled NPs, and Pd-Ni-Pt nanooctahedra can be generated by the method, the latter of which hold promise as potentially highly active oxygen reduction catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn502259g | DOI Listing |
ACS Nano
January 2025
Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States.
The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.
View Article and Find Full Text PDFGenome
January 2025
Dalhousie University, Biology, Halifax, Nova Scotia, Canada;
The actin cytoskeleton is a dynamic mesh of filaments that provide structural support for cells and respond to external deformation forces. Active sensing of these forces is crucial for the function of the actin cytoskeleton, and some actin crosslinkers accomplish it. One such crosslinker is filamin, a highly conserved actin crosslinker dimeric protein with an elastic region capable of responding to mechanical changes in the actin cytoskeleton.
View Article and Find Full Text PDFBlood
January 2025
Medical University of Vienna, Vienna, Austria.
In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.
View Article and Find Full Text PDFEnviron Technol
January 2025
Chengdu Center, China Geological Survey (Geosciences Innovation Center of Southwest China), Chengdu, People's Republic of China.
The acid mine drainage (AMD) is characterized by its highly acidic nature and elevated concentrations of metal ions, thereby exerting significant impacts on both human health and the environment. This study employed a dispersed alkaline substrate (DAS) consisting of thermal activation magnesite and pine shavings for the treatment of AMD. The investigation focused on determining the optimal thermal activation conditions of magnesite, evaluating the effectiveness of the DAS in regulating acidity and removing metal ions from AMD, identifying critical factors influencing treatment efficiency, and conducting toxicity assessment on the effluent.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, Yunnan, China.
Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!