Role of OVCA1/DPH1 in craniofacial abnormalities of Miller-Dieker syndrome.

Hum Mol Genet

Department of Life Sciences and Institute of Genome Sciences, VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Taiwan Mouse Clinic-National Phenotyping Center, Taipei, Taiwan

Published: November 2014

OVCA1/DPH1 (OVCA1) encodes a component of the diphthamide biosynthesis pathway and is located on chromosome 17p13.3. Deletions in this region are associated with Miller-Dieker syndrome (MDS). Ovca1/Dph1 (Ovca1)-null mice exhibit multiple developmental defects, including cleft palate, growth restriction and perinatal lethality, suggesting a role in the craniofacial abnormalities associated with MDS. Conditional ablation of Ovca1 in neural crest cells, but not in cranial paraxial mesoderm, also results in cleft palate and shortened lower jaw phenotypes, similar to Ovca1-null embryos. Expression of transgenic myc-tagged Ovca1 in craniofacial structures can partially rescue the cleft palate and shortened mandible of Ovca1-null embryos. Interestingly, Ovca1-null mutants are resistant to conditional expression of diphtheria toxin subunit A in both neural crest cell and paraxial mesoderm derivatives. However, OVCA1-dependent diphthamide biosynthesis is essential for neural crest cell-derived craniofacial development but that is dispensable for paraxial mesodermal-derived craniofacial structures in mammals. These findings suggest that OVCA1 deficiency in the neural crest contributes to the craniofacial abnormalities in patients with MDS. Also, our findings provide new insights into the molecular and cellular mechanisms that lead to the craniofacial defects of MDS.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddu273DOI Listing

Publication Analysis

Top Keywords

neural crest
16
craniofacial abnormalities
12
cleft palate
12
miller-dieker syndrome
8
diphthamide biosynthesis
8
paraxial mesoderm
8
palate shortened
8
ovca1-null embryos
8
craniofacial structures
8
craniofacial
7

Similar Publications

The extracellular matrix (ECM) is a complex meshwork comprising over 100 proteins. It serves as an adhesive substrate for cells and, hence, plays critical roles in health and disease. We have recently identified a novel ECM protein, SNED1, and have found that it is required for neural crest cell migration and craniofacial morphogenesis during development and in breast cancer, where it is necessary for the metastatic dissemination of tumor cells.

View Article and Find Full Text PDF

Background: Previously we found that increasing fibroblast growth factor (FGF) signaling in the neural crest cells within the frontonasal process (FNP) of the chicken embryo caused dysmorphology that was correlated with reduced proliferation, disrupted cellular orientation, and lower MAPK activation but no change in PLCy and PI3K activation. This suggests RTK signaling may drive craniofacial morphogenesis through specific downstream effectors that affect cellular activities. In this study we inhibited three downstream branches of RTK signaling to determine their role in regulating cellular activities and how these changes affect morphogenesis of the FNP.

View Article and Find Full Text PDF

Adult mammalian synovial joints have limited regenerative capacity, where injuries heal with mechanically inferior fibrotic tissues. Here we developed a unilateral whole-joint resection model in adult zebrafish to advance our understanding of how to stimulate regrowth of native synovial joint tissues. Using a combination of microCT, histological, live imaging, and single-cell RNA sequencing (scRNAseq) approaches after complete removal of all joint tissues, we find de novo regeneration of articular cartilage, ligament, and synovium into a functional joint.

View Article and Find Full Text PDF

Unlabelled: Neural crest cells (NCCs) are a multipotent embryonic cell population of ectodermal origin that extensively migrate during early development and contribute to the formation of multiple tissues. Cardiac NCCs play a critical role in heart development by orchestrating outflow tract septation, valve formation, aortic arch artery patterning, parasympathetic innervation, and maturation of the cardiac conduction system. Abnormal migration, proliferation, or differentiation of cardiac NCCs can lead to severe congenital cardiovascular malformations.

View Article and Find Full Text PDF

Protocol for generating human craniofacial cartilage organoids from stem-cell-derived neural crest cells.

STAR Protoc

December 2024

Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, and Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA. Electronic address:

Here, we present a protocol to generate craniofacial cartilage organoids from human stem cells via neural crest stem cells (NCSCs). We describe steps for inducing human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) to form NCSCs using sequential treatments of small molecules and growth factors and isolating NCSCs by magnetic bead sorting. We then detail procedures for defining conditions where NCSCs migrate together and self-organize into craniofacial cartilage organoids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!