Unlabelled: Cryptococcus spp. cause life-threatening fungal infection of the central nervous system (CNS), predominantly in patients with a compromised immune system. Why Cryptococcus neoformans has this remarkable tropism for the CNS is not clear. Recent research on cerebral pathogenesis of C. neoformans revealed a predominantly transcellular migration of cryptococci across the brain endothelium; however, the identities of key fungal virulence factors that function specifically to invade the CNS remain unresolved. Here we found that a novel, secreted metalloprotease (Mpr1) that we identified in the extracellular proteome of C. neoformans (CnMpr1) is required for establishing fungal disease in the CNS. Mpr1 belongs to a poorly characterized M36 class of fungalysins that are expressed in only some fungal species. A strain of C. neoformans lacking the gene encoding Mpr1 (mpr1Δ) failed to breach the endothelium in an in vitro model of the human blood-brain barrier (BBB). A mammalian host infected with the mpr1Δ null strain demonstrated significant improvement in survival due to a reduced brain fungal burden and lacked the brain pathology commonly associated with cryptococcal disease. The in vivo studies further indicate that Mpr1 is not required for fungal dissemination and Mpr1 likely targets the brain endothelium specifically. Remarkably, the sole expression of CnMPR1 in Saccharomyces cerevisiae resulted in a robust migration of yeast cells across the brain endothelium, demonstrating Mpr1's specific activity in breaching the BBB and suggesting that Mpr1 may function independently of the hyaluronic acid-CD44 pathway. This distinct role for Mpr1 may develop into innovative treatment options and facilitate a brain-specific drug delivery platform.
Importance: Cryptococcus neoformans is a medically relevant fungal pathogen causing significant morbidity and mortality, particularly in immunocompromised individuals. An intriguing feature is its strong neurotropism, and consequently the hallmark of cryptococcal disease is a brain infection, cryptococcal meningoencephalitis. For C. neoformans to penetrate the central nervous system (CNS), it first breaches the blood-brain barrier via a transcellular pathway; however, the identities of fungal factors required for this transmigration remain largely unknown. In an effort to identify extracellular fungal proteins that could mediate interactions with the brain endothelium, we undertook a proteomic analysis of the extracellular proteome and identified a secreted metalloprotease (Mpr1) belonging to the M36 class of fungalysins. Here we found that Mpr1 promotes migration of C. neoformans across the brain endothelium and into the CNS by facilitating attachment of cryptococci to the endothelium surface, thus underscoring the critical role of M36 proteases in fungal pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049100 | PMC |
http://dx.doi.org/10.1128/mBio.01101-14 | DOI Listing |
Alzheimers Dement
December 2024
The University of British Columbia, Vancouver, BC, Canada.
Background: An imbalance between the production and clearance of amyloid beta (Aß) has emerged as a major cause of sporadic Alzheimer's disease (AD). Retinal wholemount studies can identify cell-specific involvement in Aß clearance mechanisms which cannot be accomplished in the brain ex vivo.
Methods: Eye cross-sections of double transgenic (Tg, APP-PS1) and non-carrier sibling female mice (n = 16, 4 per group) at 3- and 9- month ages were probed with antibodies 6E10 (Aβ1-16 amino-acid residues, soluble and insoluble species), ionized calcium-binding adapter molecule 1 (IBA1, microglia/macrophage), glial fibrillary acidic protein (GFAP, astrocytes), glutamine synthetase (GS, Müller cells) and aquaporin-4 (AQP4, membrane water channel) using immunofluorescence.
Alzheimers Dement
December 2024
University of Buenos Aires, Buenos Aires, Argentina.
Background: Alzheimer's disease is characterized by the accumulation of aggregated amyloid peptides in the brain parenchyma and in the walls of brain vessels. The hippocampus - a complex brain structure that plays a key role in learning and memory - has been implicated in the disease. However, there is limited data on vascular changes during the pathological degeneration of Alzheimer's disease in this vulnerable structure, which has distinctive vascular features.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The Jackson Laboratory, Bar Harbor, ME, USA.
Background: Mechanisms driving cerebrovascular decline during Alzheimer's disease and related dementias (ADRD) are poorly understood. Methylenetetrahydrofolate reductase (MTHFR) is an enzyme in the folate/methionine pathway. Variants in MTHFR, notably 677C>T, are associated with ADRD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Oregon, Eugene, OR, USA.
Background: Elevated arterial pulse pressure (PP) is associated with cognitive decline and Alzheimer's disease (AD). High PP damages the brain vasculature by causing endothelial cell dysfunction. Stiffer cerebral arteries have an impaired ability to dampen PP, which transmits the pulsatility further into the microvasculature, where it can damage brain tissue.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Cleveland Clinic, Cleveland, OH, USA.
Background: Cell-type specific expression quantitative trait loci (eQTLs) can help dissect cellular heterogeneity in the impact of genetic variation on gene expression for Alzheimer's disease (AD) and AD-related dementia (ADRD). However, due to the high cost and stringent sample collection criteria, it is challenging to obtain large single-nuclei RNA sequencing (snRNA-seq) data with sufficient cohort size to match genotyping data to systematically identify human brain-specific eQTLs for AD/ADRD.
Method: In this study, we presented a deep learning-based deconvolution framework on large-scale bulk RNA sequencing (RNA-seq) data to infer cell-type specific eQTLs in the human brains with AD/ADRD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!