Translocase MraY is the site of action of lysis protein E from bacteriophage ϕX174. Previous genetic studies have shown that mutation F288L in transmembrane helix 9 of E. coli MraY confers resistance to protein E. Construction of a helical wheel model for transmembrane helix 9 of MraY and the transmembrane domain of protein E enabled the identification of an Arg-Trp-x-x-Trp (RWxxW) motif in protein E that might interact with Phe288 of MraY and the neighbouring Glu287. This motif is also found in a number of cationic antimicrobial peptide sequences. Synthetic dipeptides and pentapeptides based on the RWxxW consensus sequence showed inhibition of particulate E. coli MraY activity (IC50 200-600 μM), and demonstrated antimicrobial activity against E. coli (MIC 31-125 μg mL(-1)). Cationic antimicrobial peptides at a concentration of 100 μg mL(-1) containing Arg-Trp sequences also showed 30-60 % inhibition of E. coli MraY activity. Assay of the synthetic peptide inhibitors against recombinant MraY enzymes from Bacillus subtilis, Pseudomonas aeruginosa, and Micrococcus flavus (all of which lack Phe288) showed reduced levels of enzyme inhibition, and assay against recombinant E. coli MraY F288L and an E287A mutant demonstrated either reduced or no detectable enzyme inhibition, thus indicating that these peptides interact at this site. The MIC of Arg-Trp-octyl ester against E. coli was increased eightfold by overexpression of mraY, and was further increased by overexpression of the mraY mutant F288L, also consistent with inhibition at the RWxxW site. As this site is on the exterior face of the cytoplasmic membrane, it constitutes a potential new site for antimicrobial action, and provides a new cellular target for cationic antimicrobial peptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.201402064 | DOI Listing |
Vaccines (Basel)
April 2024
School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
Bacterial ghosts (BGs) are hollow bacterial cell envelopes with intact cellular structures, presenting as promising candidates for various biotechnological and biomedical applications. However, the yield and productivity of BGs have encountered limitations, hindering their large-scale preparation and multi-faceted applications of BGs. Further optimization of BGs is needed for the commercial application of BG technology.
View Article and Find Full Text PDFFront Bioeng Biotechnol
October 2023
CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Sansanmycins represent a family of uridyl peptide antibiotics with antimicrobial activity specifically against (including drug-resistant ) and . They target translocase I (MraY) to inhibit bacterial cell wall assembly. Given the unique mechanism of action, sansanmycin has emerged as a potential lead compound for developing new anti-tuberculosis drugs, while the 5'-aminouridine moiety plays a crucial role in the pharmacophore of sansanmycin.
View Article and Find Full Text PDFScience
July 2023
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
The historically important phage ΦX174 kills its host bacteria by encoding a 91-residue protein antibiotic called protein E. Using single-particle electron cryo-microscopy, we demonstrate that protein E bridges two bacterial proteins to form the transmembrane YES complex [MraY, protein E, sensitivity to lysis D (SlyD)]. Protein E inhibits peptidoglycan biosynthesis by obstructing the MraY active site leading to loss of lipid I production.
View Article and Find Full Text PDFChemistry
January 2023
Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany.
Overcoming increasing antibiotic resistance requires the development of novel antibacterial agents that address new targets in bacterial cells. Naturally occurring nucleoside antibiotics (such as muraymycins) inhibit the bacterial membrane protein MraY, a clinically unexploited essential enzyme in peptidoglycan (cell wall) biosynthesis. Even though a range of synthetic muraymycin analogues has already been reported, they generally suffer from limited cellular uptake and a lack of activity against Gram-negative bacteria.
View Article and Find Full Text PDFEnzyme Microb Technol
August 2022
School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China. Electronic address:
The naturally occurring and mutated promoters inserted into expression plasmids or Escherichia coli chromosome are essential for recombinant protein production and metabolic engineering. Analyzing their activities and screening the promoter libraries require the simple and easy-to-use reporter. Here, we developed a novel and efficient approach to detect the promoter activity, based on E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!