In situ oxidation study of Pd-Rh nanoparticles on MgAl₂O₄(001).

Phys Chem Chem Phys

Deutsches Elektronen Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.

Published: July 2014

Alloy nanoparticles on oxide supports are widely used as heterogeneous catalysts in reactions involving oxygen. Here we discuss the oxidation behavior of Pd-Rh alloy nanoparticles on MgAl2O4(001) supports with a particle diameter from 6-11 nm. As an In situ tool, we employed high energy grazing incidence X-ray diffraction at a photon energy of 85 keV. We find that physical vapor deposited Pd-Rh nanoparticles grow epitaxially on MgAl2O4(001) with a truncated octahedral shape over the whole concentration range. During our systematic oxidation experiments performed at 670 K in the pressure range from 10(-3) to 0.1 mbar, we observe for Rh containing nanoparticles the formation of two different Rh oxide phases, namely RhO2 and a spinel-like Rh3O4 phase. PdO formation is only observed for pure Pd nanoparticles. This oxidation induced segregation behavior is also reflected in the oxidation induced enlargement of the average nanoparticle lattice parameter towards to value for pure Pd. Our results have ramifications for the phase separation behavior of alloy nanocatalysts under varying reducing and oxidizing environments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp01271bDOI Listing

Publication Analysis

Top Keywords

pd-rh nanoparticles
8
alloy nanoparticles
8
oxidation induced
8
nanoparticles
6
situ oxidation
4
oxidation study
4
study pd-rh
4
nanoparticles mgal₂o₄001
4
mgal₂o₄001 alloy
4
nanoparticles oxide
4

Similar Publications

In this study, we investigate the electrodeposition of various metals on silicon. Mn, Co, Ni, Ru, Pd, Rh, and Pt were identified as promising candidates for controlled electrodeposition onto silicon. Electrochemical evaluations employing cyclic voltammetry, Scanning Electron Microscopy (SEM) associated with energy-dispersive X-Ray Spectroscopy (SEM-EDS), and X-Ray Photoelectron Spectroscopy (XPS) techniques confirmed the deposition of Pd, Rh, and Pt as nanoparticles.

View Article and Find Full Text PDF

A General Approach for Metal Nanoparticle Encapsulation Within Porous Oxides.

Adv Mater

December 2024

Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA.

Encapsulation of metal nanoparticles within oxide materials has been shown as an effective strategy to improve activity, selectivity, and stability in several catalytic applications. Several approaches have been proposed to encapsulate nanoparticles, such as forming core-shell structures, growing ordered structures (zeolites or metal-organic frameworks) on nanoparticles, or directly depositing support materials on nanoparticles. Here, a general nanocasting method is demonstrated that can produce diverse encapsulated metal@oxide structures with different compositions (Pt, Pd, Rh) and multiple types of oxides (AlO, AlO-CeO, ZrO, ZnZrO, InO, MnO, TiO) while controlling the size and dispersion of nanoparticles and the porous structure of the oxide.

View Article and Find Full Text PDF

A colorimetric sensor for rapid discrimination of tea polyphenols and tea authentication based on Rh-decorated Pd nanocubes with high peroxidase-like activity.

Talanta

August 2024

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China. Electronic address:

The rapid development of nanozymes has offered substantial opportunities for the fields of biomedicine, chemical sensing, and food safety. Among these applications, multichannel sensors, with the capability of simultaneously detecting multiple target analytes, hold promise for the practical application of nanozymes in chemical sensing with high detection efficiency. In this study, Rh-decorated Pd nanocubes (Pd-Rh nanocubes) with significantly enhanced peroxidase-like activity are synthesized through the mediation of underpotential deposition (UPD) and subsequently employed to develop a multichannel colorimetric sensor for discriminating tea polyphenols (TPs) and tea authentication.

View Article and Find Full Text PDF

Morphology-controlled nanoparticles of high entropy intermetallic compounds are quickly becoming high-value targets for catalysis. Their ordered structures with multiple distinct crystallographic sites, coupled with the "cocktail effect" that emerges from randomly mixing a large number of elements, yield catalytic active sites capable of achieving advanced catalytic functions. Despite this growing interest, little is known about the pathways by which high entropy intermetallic nanoparticles form and grow in solution.

View Article and Find Full Text PDF

This article presents studies on the precipitation of Pt, Pd, Rh, and Ru nanoparticles (NPs) from model and real multicomponent solutions using sodium borohydride, ascorbic acid, sodium formate, and formic acid as reducing agents and polyvinylpyrrolidone as a stabilizing agent. As was expected, apart from PGMs, non-precious metals were coprecipitated. The influence of the addition of non-precious metal ions into the feed solution on the precipitation yield and catalytic properties of the obtained precipitates was studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!