Novel synthetic toll-like receptor 4/MD2 ligands attenuate sterile inflammation.

J Pharmacol Exp Ther

Rebecca and John Moores UCSD Cancer Center (T.H., B.C., S.Y., H.B.C., M.Ch., D.A.C.) and Department of Medicine, University of California San Diego, La Jolla, California (C.D.C., M.Co.)

Published: August 2014

Toll-like receptor (TLR) stimulation has been implicated as a major contributor to chronic inflammation. Among these receptors, TLR4 has been described as a key regulator of endogenous inflammation and has been proposed as a therapeutic target. Previously, we discovered by high-throughput screening a group of substituted pyrimido[5,4-b]indoles that activated a nuclear factor-κB reporter in THP-1 human monocytic cells. A biologically active hit compound was resynthesized, and derivatives were prepared to assess structure-activity relationships. The derived compounds activated cells in a TLR4/myeloid differentiation protein 2 (MD2)-dependent and CD14-independent manner, using the myeloid differentiation primary response 88 and Toll/IL-1 receptor domain-containing adapter-inducing interferon-β pathways. Two lead compounds, 1Z105 and 1Z88, were selected for further analysis based on favorable biologic properties and lack of toxicity. In vivo pharmacokinetics indicated that 1Z105 was orally bioavailable, whereas 1Z88 was not. Oral or parenteral doses of 1Z105 and 1Z88 induced undetectable or negligible levels of circulating cytokines and did not induce hepatotoxicity when administered to galactosamine-conditioned mice, indicating good safety profiles. Both compounds were very effective in preventing lethal liver damage in lipopolysaccharide treated galatosamine-conditioned mice. Orally administered 1Z105 and parenteral 1Z88 prevented arthritis in an autoantibody-driven murine model. Hence, these low molecular weight molecules that target TLR4/MD2 were well tolerated and effective in reducing target organ damage in two different mouse models of sterile inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109491PMC
http://dx.doi.org/10.1124/jpet.114.214312DOI Listing

Publication Analysis

Top Keywords

toll-like receptor
8
sterile inflammation
8
1z105 1z88
8
novel synthetic
4
synthetic toll-like
4
receptor 4/md2
4
4/md2 ligands
4
ligands attenuate
4
attenuate sterile
4
inflammation
4

Similar Publications

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

Intracellular CIRP promotes liver regeneration via STAT3 signaling pathway activation after partial hepatectomy in mice.

Int J Mol Med

March 2025

National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.

Cold‑inducible RNA‑binding protein (CIRP) is a cold shock protein implicated in the regulation of multiple biological processes depending on its cellular localization. However, to the best of our knowledge, the role of CIRP in liver regeneration and injury after hepatectomy has not been investigated. The present study was therefore designed to explore whether CIRP is involved in liver regeneration after hepatectomy and its specific role and underlying molecular mechanism.

View Article and Find Full Text PDF

Introduction: Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice.

View Article and Find Full Text PDF

Overfeeding and overweight rapidly reprogram inflammatory signaling.

Clin Immunol

January 2025

Division of Immunology, Boston Children's Hospital, Boston, MA, United States of America. Electronic address:

Epidemiologic studies have shown a continuous increase in mortality risk associated with overweight, thus highlighting the health risks beginning before the onset of obesity. However, early changes in inflammatory signaling induced by an obesogenic diet remain largely unknown since studies of obesity typically utilize models induced by months of continuous exposure to a high-fat diet. Here, we investigated how short-term overfeeding remodels inflammatory signaling.

View Article and Find Full Text PDF

Regulation of macrophage polarization by metformin through inhibition of TLR4/NF-κB pathway to improve pre-eclampsia.

Placenta

January 2025

Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311200, China. Electronic address:

Introduction: Pre-eclampsia (PE) is a pregnancy complication featuring hypertension and proteinuria. Metformin exerts clinically preventive effects on PE with an unspecified mechanism.

Methods: Placental tissues from PE patients and normal pregnant (NP) women were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!