Capturing carbon dioxide as a polymer from natural gas.

Nat Commun

1] Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA [2] The Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, Texas 77005, USA [3] The Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA.

Published: June 2014

Natural gas is considered the cleanest and recently the most abundant fossil fuel source, yet when it is extracted from wells, it often contains 10-20 mol% carbon dioxide (20-40 wt%), which is generally vented to the atmosphere. Efforts are underway to contain this carbon dioxide at the well-head using inexpensive and non-corrosive methods. Here we report nucleophilic porous carbons are synthesized from simple and inexpensive carbon-sulphur and carbon-nitrogen precursors. Infrared, Raman and (13)C nuclear magnetic resonance signatures substantiate carbon dioxide fixation by polymerization in the carbon channels to form poly(CO2) under much lower pressures than previously required. This growing chemisorbed sulphur- or nitrogen-atom-initiated poly(CO2) chain further displaces physisorbed hydrocarbon, providing a continuous carbon dioxide selectivity. Once returned to ambient conditions, the poly(CO2) spontaneously depolymerizes, leading to a sorbent that can be easily regenerated without the thermal energy input that is required for traditional sorbents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603724PMC
http://dx.doi.org/10.1038/ncomms4961DOI Listing

Publication Analysis

Top Keywords

carbon dioxide
20
natural gas
8
dioxide
5
carbon
5
capturing carbon
4
dioxide polymer
4
polymer natural
4
gas natural
4
gas considered
4
considered cleanest
4

Similar Publications

Potential Air Quality Side-Effects of Emitting HO to Enhance Methane Oxidation as a Climate Solution.

Environ Sci Technol

January 2025

Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah 84112, United States.

Methane (CH) is a greenhouse gas with a global warming potential 81.2 times higher than carbon dioxide (CO). The intentional emission of oxidants into the atmosphere has been proposed as a geoengineering solution to accelerate the oxidation of CH to CO, thereby reducing surface warming.

View Article and Find Full Text PDF

Detection of trace gases, such as radioactive carbon dioxide, clumped isotopes, and reactive radicals, is of great interest and poses significant challenges in various fields. Achieving both high selectivity and high sensitivity is essential in this context. We present a highly selective molecular spectroscopy method based on comb-locked, mid-infrared, cavity-enhanced, two-photon absorption.

View Article and Find Full Text PDF

This study intends to optimize the carbon footprint management model of power enterprises through artificial intelligence (AI) technology to help the scientific formulation of carbon emission reduction strategies. Firstly, a carbon footprint calculation model based on big data and AI is established, and then machine learning algorithm is used to deeply mine the carbon emission data of power enterprises to identify the main influencing factors and emission reduction opportunities. Finally, the driver-state-response (DSR) model is used to evaluate the carbon audit of the power industry and comprehensively analyze the effect of carbon emission reduction.

View Article and Find Full Text PDF

Tracheal mucosal keratosis: Case discussion and literature review.

Chron Respir Dis

January 2025

Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

A 57-year-old female presented with a chief complaint of cough, with productive yellow sputum particularly severe in the morning. Bronchoscopy revealed inflammatory changes in both main bronchi, with abundant white purulent secretions and necrotic material adhering to the luminal surface. Histopathological examination showed chronic inflammatory changes in the mucosal tissue, with mild hyperplasia of the local squamous epithelium and evidence of keratinization in the surrounding area, consistent with a diagnosis of tracheal mucosal keratosis.

View Article and Find Full Text PDF

The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO by CA, following in an increase in carbon flux near Rubisco boosting CO fixation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!