Congenital long QT syndrome is a heritable family of arrhythmias caused by mutations in 13 genes encoding ion channel complex proteins. Mounting evidence has implicated the Purkinje fiber network in the genesis of ventricular arrhythmias. In this study, we explore the hypothesis that long QT mutations can demonstrate different phenotypes depending on the tissue type of expression. Using computational models of the human ventricular myocyte and the Purkinje fiber cell, the biophysical alteration in channel function in LQT1, LQT2, LQT3, and LQT7 are modeled. We identified that the plateau potential was important in LQT1 and LQT2, in which mutation led to minimal action potential prolongation in Purkinje fiber cells. The phenotype of LQT3 mutation was dependent on the biophysical alteration induced as well as tissue type. The canonical ΔKPQ mutation causes severe action potential prolongation in both tissue types. For LQT3 mutation F1473C, characterized by shifted channel availability, a more severe phenotype was seen in Purkinje fiber cells with action potential prolongation and early afterdepolarizations. The LQT3 mutation S1904L demonstrated striking effects on action potential duration restitution and more severe action potential prolongation in Purkinje fiber cells at higher heart rates. Voltage clamp simulations highlight the mechanism of effect of these mutations in different tissue types, and impact of drug therapy is explored. We conclude that arrhythmia formation in long QT syndrome may depend not only on the basis of mutation and biophysical alteration, but also upon tissue of expression. The Purkinje fiber network may represent an important therapeutic target in the management of patients with heritable channelopathies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4043730 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097720 | PLOS |
Nat Cardiovasc Res
January 2025
Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
Arrhythmias are a hallmark of myocardial infarction (MI) and increase patient mortality. How insult to the cardiac conduction system causes arrhythmias following MI is poorly understood. Here, we demonstrate conduction system restoration during neonatal mouse heart regeneration versus pathological remodeling at non-regenerative stages.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan.
Bone morphogenetic proteins (BMPs), regulators of bone formation, have been implicated in embryogenesis and morphogenesis of various tissues and organs. BMP signaling plays a role in the formation of appropriate synaptic connections and development of normal neural circuits in the brain. However, physiological roles of BMP signaling in postnatal neural functions, including synaptic plasticity, remain largely unknown.
View Article and Find Full Text PDFComput Biol Med
December 2024
Research Center E. Piaggio, University of Pisa, L. Lazzarino, 1, Pisa, 56122, Italy; Information Engineering Department, University of Pisa, G. Caruso, 16, Pisa, 56122, Italy.
In this paper, we present CardioMat, a Matlab toolbox for cardiac electrophysiology simulation based on patient-specific anatomies. The strength of CardioMat is the easy and fast construction of electrophysiology cardiac digital twins from segmented anatomical images in a general-purpose software such as Matlab. CardioMat implements a quasi-automatic pipeline that guides the user toward the construction of anatomically detailed cardiac electrophysiology models.
View Article and Find Full Text PDFUltrastruct Pathol
January 2025
Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
Methods: Twelve pregnant female rats were divided into a control group and a valproic acid (VPA) treated group (injected intraperitoneally on embryonic day 12 with 600 mg/kg body weight of VPA). Neurobehavioral tests were conducted on the offspring of both groups. The cerebellum was studied by light and electron microscopy as well as GFAP and caspase-3 immunohistochemical staining.
View Article and Find Full Text PDFAnn Noninvasive Electrocardiol
January 2025
Department of Cardiology, The First Hospital of Jiaxing Affiliated Hospital of Jiaxing University, Jiaxing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!