Continuous-flow microelectroextraction for enrichment of low abundant compounds.

Anal Chem

Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.

Published: August 2014

We present a continuous-flow microelectroextraction flow cell that allows for electric field enhanced extraction of analytes from a large volume (1 mL) of continuously flowing donor phase into a micro volume of stagnant acceptor phase (13.4 μL). We demonstrate for the first time that the interface between the stagnant acceptor phase and fast-flowing donor phase can be stabilized by a phaseguide. Chip performance was assessed by visual experiments using crystal violet. Then, extraction of a mixture of acylcarnitines was assessed by off-line coupling to reversed phase liquid chromatography coupled to time-of-flight mass spectrometry, resulting in concentration factors of 80.0 ± 9.2 times for hexanoylcarnitine, 73.8 ± 9.1 for octanoylcarnitine, and 34.1 ± 4.7 times for lauroylcarnitine, corresponding to recoveries of 107.8 ± 12.3%, 98.9 ± 12.3%, and 45.7 ± 6.3%, respectively, in a sample of 500 μL delivered at a flow of 50 μL min(-1) under an extraction voltage of 300 V. Finally, the method was applied to the analysis of acylcarnitines spiked to urine, resulting in detection limits as low as 0.3-2 nM. Several putative endogenous acylcarnitines were found. The current flowing-to-stagnant phase microelectroextraction setup allows for the extraction of milliliter range volumes and is, as a consequence, very suited for analysis of low-abundant metabolites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac500707vDOI Listing

Publication Analysis

Top Keywords

continuous-flow microelectroextraction
8
donor phase
8
stagnant acceptor
8
acceptor phase
8
phase
6
microelectroextraction enrichment
4
enrichment low
4
low abundant
4
abundant compounds
4
compounds continuous-flow
4

Similar Publications

Continuous-flow microelectroextraction for enrichment of low abundant compounds.

Anal Chem

August 2014

Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.

We present a continuous-flow microelectroextraction flow cell that allows for electric field enhanced extraction of analytes from a large volume (1 mL) of continuously flowing donor phase into a micro volume of stagnant acceptor phase (13.4 μL). We demonstrate for the first time that the interface between the stagnant acceptor phase and fast-flowing donor phase can be stabilized by a phaseguide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!