Water-soluble, hydroxylated fullerene (fullerol) materials have recently gained increasing attention as they have been identified as the primary product(s) during the exposure of fullerenes (as water stable, nanoscale aggregated C60) to UV light in water. The physical properties and chemical reactivity of resulting fullerols, however, have not been thoroughly studied. In this paper, we identified and characterized the reductive transformation of fullerol (C60(OH)x(ONa)y) by solid zinc metal (Zn(0)) through a series of batch reaction experiments and product characterization, including (13)C NMR, FTIR, XPS, UV-vis, DLS, and TEM. Results indicated the facile formation of water stable, pH sensitive hemiketal functionality as part of a relatively reduced fullerol product. Further, aqueous physical behavior of the product fullerol, as measured by octanol partitioning and surface deposition rates, was observed to significantly differ from the parent material and is consistent with a relative increase in molecular (product) hydrophobicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es5012912 | DOI Listing |
Small Methods
January 2025
National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH)[Ag(mna)] (Hmna = 2-mercaptonicotinic acid, abbreviated to Ag─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C─OH, which provides a feasible basis for realizing the NLO response.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.
In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskii Prospect 31, Moscow 119071, Russia.
Electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of water-soluble fullerene derivatives was investigated. The electronic structure, morphology, spectroelectrochemical, electrochemical properties and near-IR photoconductivity of composite films of poly(3,4-ethylenedioxythiophene) with fullerenes were studied for the first time. It was shown that fullerene with hydroxyl groups creates favorable conditions for the formation of PEDOT chains and more effectively compensates for the positive charges on the PEDOT chains.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
Modulating the optical response of fluorescent nanoparticles through rational modification of their surface chemistry can yield distinct optical signatures upon the interaction with structurally related molecules. Herein, we present a method for tuning the fluorescence response of single-walled carbon nanotubes (SWCNTs) toward dopamine (DA) and serotonin, two structurally related monoamine-hydroxylated aromatic neurotransmitters, by introducing oxygen defects into (6,5) chirality-enriched SWCNTs suspended by sodium cholate (SC). This modification facilitated opposite optical responses toward these neurotransmitters, where DA distinctly increased the fluorescence of the defect-induced emission of SWCNTs (D-SWCNTs) 6-fold, while serotonin notably decreased it.
View Article and Find Full Text PDFACS Sens
November 2024
Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China.
An ultralow cathodic potential electrochemiluminescence (ECL) aptasensor was designed, employing DNA nanoribbon template self-assembly copper nanoclusters (DNR-CuNCs) as a novel coreaction accelerator within the luminol-HO system for the sensitive detection of kanamycin (KANA). Mechanistic investigations revealed that the DNR-CuNCs preferred to generate highly active hydroxyl radicals by facilitating the reduction of the coreactant HO under neutral pH conditions, consequently enhancing cathodic luminescence. By the strong π-π stacking effect of KANA aptamer and graphene as a signal modulation switch, DNR-CuNCs were displaced from the electrode surface due to the affinity of KANA and its aptamer, resulting in the inhibition of the luminol-HO system and a decrease in the ECL signal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!