Introduction: Neuromuscular blockade (NMB) is widely used during therapeutic hypothermia (TH) after cardiac arrest but its effect on patient outcomes is unclear. We compared the effects of NMB on neurological outcomes and frequency of early-onset pneumonia in cardiac-arrest survivors managed with TH.
Methods: We retrospectively studied consecutive adult cardiac-arrest survivors managed with TH in a tertiary-level intensive care unit between January 2008 and July 2013. Patients given continuous NMB for persistent shivering were compared to those managed without NMB. Cases of early-onset pneumonia and vital status at ICU discharge were recorded. To avoid bias due to between-group baseline differences, we adjusted the analysis on a propensity score.
Results: Of 311 cardiac-arrest survivors, 144 received TH, including 117 with continuous NMB and 27 without NMBs. ICU mortality was lower with NMB (hazard ratio [HR], 0.54 [0.32; 0.89], p=0.016) but the difference was not significant after adjustment on the propensity score (HR, 0.70 [0.39; 1.25], p=0.22). The proportion of patients with good neurological outcomes was not significantly different (36% with and 22% without NMB, p=0.16). Early-onset pneumonia was more common with NMB (HR, 2.36 [1.24; 4.50], p=0.009) but the difference was not significant after adjustment on the propensity score (HR, 1.68 [0.90; 3.16], p=0.10).
Conclusions: Continuous intravenous NMB during TH after cardiac arrest has potential owns effects on ICU survival with a trend increase in the frequency of early-onset pneumonia. Randomised controlled trials are needed to define the role for NMB among treatments for TH-induced shivering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resuscitation.2014.05.017 | DOI Listing |
Alzheimers Dement
December 2024
Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, USA.
Background: SARS-CoV-2 causes a variety of neurological sequelae in COVID-19 survivors, including fatigue and cognitive dysfunction. Endothelial dysfunction is the unifying and central mechanism of COVID-19 illness and a major risk factor for vascular dementia (VaD). Endothelial dysfunction stems, in part, from an imbalance between nitric oxide (NO) generated by the endothelial nitric oxide synthase (eNOS) and reactive oxidant species produced by uncoupled-eNOS.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, USA.
Background: Increasing evidence suggests that SARS-CoV-2 infection may lead to early onset and aggravation of pre-existing vascular dementia and Alzheimer's disease. Methylene tetrahydrofolate reductase (Mthfr) is a critical enzyme in folate metabolism, also required for optimal brain function. Mthfr deficient mice display cognitive impairments and neurovascular deficits and polymorphisms in MTHFR increases dementia risk.
View Article and Find Full Text PDFJ Postgrad Med
January 2025
Department of Infectious Diseases, Damascus University- Faculty of Medicine, Damascus, Syria.
Introduction: This study aimed to determine the bacterial profile and their antibiotic spectrum in patients with ventilator-associated pneumonia (VAP) and investigate the risk factors for VAP and the presence of multidrug-resistant (MDR) pathogens.
Materials And Methods: A cross-sectional study was included 105 patients with clinically suspected VAP in intensive care units (ICUs) of two university hospitals from Syria, between January 2023 and February 2024. Culture-positive included 69 samples (65.
Am J Infect Control
December 2024
Department of Microbiology, Vietnam National Children's Hospital, Hanoi, Vietnam.
Ecotoxicol Environ Saf
December 2024
Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510160, China. Electronic address:
Background: Epidemiological studies have consistently demonstrated a robust association between long-term exposure to air pollutants and respiratory diseases. However, establishing causal relationships remains challenging due to residual confounding in observational studies. In this study, Mendelian randomization (MR) analysis was used to explore the causal and epigenetic relationships between various air pollutants and common respiratory diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!