This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994767 | PMC |
http://dx.doi.org/10.1115/1.4006636 | DOI Listing |
PLoS One
January 2025
Automation School Guangdong University of Petrochemical Technology, Maoming, Guangdong, China.
Centrifugal compressors are widely used in the oil and natural gas industry for gas compression, reinjection, and transportation. Fault diagnosis and identification of centrifugal compressors are crucial. To promptly monitor abnormal changes in compressor data and trace the causes leading to these data anomalies, this paper proposes a security monitoring and root cause tracing method for compressor data anomalies.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
Background: Centrifugal compressors are dynamic machines utilizing a rotating impeller, efficiently accelerate incoming gases, transforming kinetic energy into pressure energy for compression. They serve a wide range of industries, including air conditioning, refrigeration, gas turbines, industrial processes, and applications such as air compression, gas transportation, and petrochemicals, demonstrating their versatility. Designing a centrifugal compressor poses challenges related to achieving high aerodynamic efficiency, surge and choke control, material selection, rotor dynamics, cavitation, erosion, and addressing environmental considerations while balancing costs.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Data Science and Technology, North University of China, Taiyuan 030051, China.
Blades are the core components of rotating machinery, and the blade vibration status directly impacts the working efficiency and safe operation of the equipment. The blade tip timing (BTT) technique provides a solution for blade vibration monitoring and is currently a prominent topic in research on blade vibration issues. Nevertheless, the non-stationary factors present in actual engineering applications introduce inaccuracies in the BTT technique, resulting in blade vibration measurement errors.
View Article and Find Full Text PDFPeerJ Comput Sci
October 2024
Automation School, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China.
PLoS One
November 2024
China Industrial Control Systems Cyber Emergency Response Team, Beijing, China.
To enhance the aerodynamic performance of centrifugal impellers, this study presents an advanced optimization design methodology. This methodology addresses the challenges associated with numerous design variables, inflexible configurations, and low optimization efficiency. We propose two distinct spline function parameterization techniques: a global mapping model for Bezier surfaces and a local mapping model for Free-Form Deformation (FFD) control bodies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!